BIOLOGY (BIOL)

BIOL 005 The Genomic Revolution: A First Year Seminar
The goal of this course is to convey a basic understanding of human genome science and in so doing, to learn of its impact on treatment of human disease and discernment of aspects of human identity. Our current understanding of the structure and function of genes will allow a personalized treatment for many diseases, but just how such advances are applied will involve ethical as well as scientific considerations. We will discuss how the field of genetics has been changed dramatically by the ability to clone and sequence genes, and then to be further transformed by massive sequencing of whole genomes. A major part of the course will be devoted to how these advances have led to understanding and treatment of genetic disease and cancer. We will also discuss the tremendous potential (and dangers) of gene editing advances. Finally, we will explore how genomics has allowed an understanding of deep human history, as well as the ability to decipher one's more immediate ancestry. Readings will be from a number of books written for an informed general audience rather than from a textbook. The seminar should be of interest to those who would like to fulfill their Living World General Education requirement, and particularly also to those who eventually might be interested in taking courses in the Life Sciences but initially would like an introductory seminar-type approach within a focused area.
Taught by: Weinberg
Course usually offered in fall term
Activity: Seminar
1.0 Course Unit

BIOL 006 Evaluating Medical Treatment: How Do We (and the FDA) Know What Works?
The development of new medical treatments typically culminates in one or more clinical trials - experiments in which the effects of the new treatment are compared with the effects of another treatment or no treatment. A great many considerations go into the design of these medical experiments. In this seminar, we will discuss the basic structure of the clinical trial, the varying types of designs that may be used, the scientific and ethical issues that arise, and the regulatory process that ultimately determines whether medical products are effective and safe and whether they can be made available to the public. May not be counted toward the Biology major or minor.
Taught by: Ellenberg
Course not offered every year
Activity: Seminar
1.0 Course Unit

BIOL 011 Humans in a Microbial World
Microbes are a fundamental part of life on this planet. This course will explore the causes and consequences of the distribution and abundance of microbes (microbial ecology) as well as microbial evolution on human health and disease risk. We will address the interplay between human society and microbial ecology and evolution in shaping disease risk and directing scientific study. This course will apply concepts from basic biology, ecology, and evolution to study infectious microbes as living creatures. May not be toward the Biology major or minor.
For BA Students: Living World Sector
Taught by: Brisson
Course not offered every year
Activity: Seminar
1.0 Course Unit

BIOL 014 Descent with Modification: An introduction to the science of evolution
Evolution provides the unifying framework for the biological sciences and has been confirmed by a huge and diverse body of evidence. Public opinion polls show, however, that evolution continues to be socially and politically controversial in the United States. In this freshman seminar, we will explore the scientific basis for evolution by reading and discussing historical sources, a current nontechnical text on evolution, and selected papers and articles from the scientific and popular literature. With our knowledge of evolutionary fact and theory as background, we will also discuss social and political opposition to the teaching of evolution. Grading will be based on participation in class discussions and on performance in several brief writing assignments. There is no course prerequisite, but high school introductory biology would be helpful. May not be counted toward the Biology major and minor. Prerequisite: General biology background preferred but not required.
For BA Students: Living World Sector
Taught by: Sniegowski
Course offered fall; even-numbered years
Activity: Seminar
1.0 Course Unit

BIOL 017 The Biology of Food
This course will examine the ways in which humans manipulate - and have been manipulated by - the organisms we depend on for food, with particular emphasis on the biological factors that influence this interaction. The first part of the course will cover the biology, genetics, evolution, and breeding of cultivated plants and animals; the second part will concern the ecological, economic, and political factors that influence food production. May not be counted toward the Biology major or minor.
For BA Students: Living World Sector
Taught by: Poethig
Course offered spring; odd-numbered years
Activity: Lecture
1.0 Course Unit
Biology (BIOL)

BIOL 019 Biological Science and Public Policy
This course will examine the scientific basis of public policy decision making in areas of human health, the environment, energy, and agriculture. A general understanding of the science involved in these areas - predominantly genetics, cell biology, physiology, and ecology - will be applied to topics such as drug and herbicide resistance, endangered species, regulation of biotechnology, microbial sources of energy, control of toxic substances, and the war against cancer. No formal background in biology or policy is required. The course should be particularly useful for non-science students who would like to gain insight into areas of biology of importance to public decision making and to students of public policy who would like a better background on biological issues. May not be counted toward the Biology major or minor. Only offered through the College of Liberal and Professional Studies. Prerequisite: High school biology recommended
Course usually offered in fall term
Activity: Lecture
1.0 Course Unit

BIOL 101 Introduction to Biology A
General principles of biology focusing on the basic chemistry of life, cell biology, molecular biology, and genetics in all types of living organisms. Particular emphasis will be given to links between the fundamental processes covered and current challenges of humankind in the areas of energy, food, and health. (3 hrs. lec., 3 hrs. lab, 1.5 c.u.) Biology majors and pre-medical students should take either BIOL 101 or 121. BIOL 101 is the companion course to BIOL 102 and should be taken before BIOL 102.
For BA Students: Living World Sector
One-term course offered either term
Activity: Lecture
1.5 Course Unit

BIOL 102 Introduction to Biology B
General principles of biology focusing on evolution, physiology, development, and ecology in all types of living organisms. (3 hrs. lec., 3 hrs. lab, 1.5 c.u.) BIOL 102 is the companion course to BIOL 101 and should be taken after BIOL 101.
For BA Students: Living World Sector
One-term course offered either term
Prerequisite: BIOL 101
Activity: Lecture
1.5 Course Unit

BIOL 109 Introduction to Brain and Behavior
Introduction to the structure and function of the vertebrate nervous system. We begin with the cellular basis of neuronal activities, then discuss the physiological basis of motor control, sensory systems, motivated behaviors, and higher mental processes. This course is intended for students interested in the neurobiology of behavior, ranging from animal behaviors to clinical disorders.
For BA Students: Living World Sector
Taught by: Kane and McLean
One-term course offered either term
Also Offered As: BIBB 109, PSYC 109
Activity: Lecture
1.0 Course Unit

BIOL 121 Introduction to Biology - The Molecular Biology of Life
An intensive introductory lecture course covering the cell, molecular biology, biochemistry, and the genetics of animals, bacteria, and viruses. This course is comparable to Biology 101, but places greater emphasis on molecular mechanisms and experimental approaches. Particular attention is given to the ways in which modern cell biological and molecular genetic methods contribute to our understanding of evolutionary processes, the mechanistic basis of human disease, and recent biotechnological innovations. Students are encouraged to take BIOL 121 and 123 concurrently. Biology majors and pre-medical students should take either BIOL 101 or 121. BIOL 121 is the companion course to BIOL 124 and may be taken before or after BIOL 124. Solid high school biology and strong high school chemistry or CHEM 101
For BA Students: Living World Sector
Course usually offered in fall term
Prerequisite: CHEM 101
Activity: Lecture
1.0 Course Unit

BIOL 122 Introductory Molecular Biology Laboratory
An intensive introductory laboratory course emphasizing how molecular biology has revolutionized our understanding of cell and organism functions. BIOL 121 and 123 should be taken concurrently.
Taught by: Hogan
Course usually offered in fall term
Prerequisite: BIOL 121
Activity: Lecture
0.5 Course Units

BIOL 123 Introductory Organismal Biology Lab
An intensive introductory laboratory course in organismal biology. Solid high school biology or credit by exam for BIOL 102. (1 hr. lec., 3 hrs. lab, 0.5 c.u.) BIOL 124 is the companion course to BIOL 121 and may be taken before or after BIOL 121. Students may not take both BIOL 102 and 214 for credit.
Taught by: Robinson/Hogan
Course usually offered in spring term
Activity: Lecture
0.5 Course Units

BIOL 124 Introductory Organismal Biology Lab
An intensive introductory laboratory course in organismal biology. Solid high school biology or credit by exam for BIOL 102. (1 hr. lec., 3 hrs. lab, 0.5 c.u.) BIOL 124 is the companion course to BIOL 121 and may be taken before or after BIOL 121. Students may not take both BIOL 102 and 214 for credit.
Taught by: Robinson/Hogan
Course usually offered in spring term
Activity: Lecture
0.5 Course Units

BIOL 138 Energy Transformations and Living Off-the-Grid
The course will examine major sources of energy on earth: sunlight, mechanical, chemical and biological, and how this energy is transformed into useful energy for humans - typically electrical energy or food. Considerable emphasis will be on forms of regenerative energy that can be used when living off-the-grid. As a case study, we will examine some approaches taken by the US military to provide energy capability for dismounted Marines operating on foot in austere environments. Faculty lectures will be supplemented by guest lectures from leaders in government and industry. Prerequisite: High school biology and math No scientific knowledge is assumed beyond high school biology, chemistry and physics. Energy is necessarily a quantitative subject so students should be comfortable with quantitative approaches. A major goal of this course is for students to develop an awareness for the amounts of energy they use in their daily lives, and how they might reduce them. As an exercise, students will measure how much energy their smart phones and laptops use in a day and try to generate a comparable amount of energy through physical effort.
Taught by: Rome
Course offered fall; odd-numbered years
Activity: Seminar
1.0 Course Unit
BIOL 140 Humans and the Environment
Intensive exposure to current issues and solutions in contemporary human interactions with the environment. Global in scope, but focused on case histories. Emphasis on providing biological and sociological background for a given major environment-human interaction, and state-of-the-art suggested solutions.
For BA Students: Natural Science and Math Sector
Taught by: Janzen
Course usually offered in fall term
Also Offered As: BIOL 440
Prerequisites: Sophomore standing or greater. Some biology background suggested
Activity: Lecture
1.0 Course Unit

BIOL 165 Field Studies in Tropical Biodiversity and Conservation
We will use the Area de Conservacion Guanacaste (ACG) in Costa Rica as a living laboratory and case study in how to effectively foster community based environmental stewardship of natural ecosystems. This is an immersion course that broadly covers four major themes including: 1, biodiversity; 2, conservation philosophies and practices; 3, primary ecosystems within the Costa Rican ACG and their major species composition; and 4, fundamentals of field ecology (terrestrial and marine) including the practice and implementation of the scientific method. Students will learn how to develop and conduct research experiments via field-based activities, and will gain familiarity with a diversity of terrestrial and marine organisms including insects, endemic and invasive species of terrestrial flora and megafauna, corals, algae, invertebrates, fish, sea turtles and marine mammals. Additional topics covered will include fundamentals of oceanography, ecological and evolutionary principles as applied to ecosystem structure, function, and biodiversity, and environmental and management challenges of the Costa Rican ACG and tropical ecosystems globally. Application required through Penn Global: https://global.upenn.edu/pennabroad/pgs
Taught by: Sherwood
Course usually offered in fall term
Activity: Seminar
1.0 Course Unit

BIOL 199 Clinical & Translational Research
Independent study for students doing research based on data that is generated in a clinical setting. Projects must be sponsored by standing faculty of the University of Pennsylvania and co-sponsored by a faculty member in the Department of Biology. The project must be of biological interest and must use appropriate quantitative or statistical methods. A final paper is required. Apply at the Academic Office, 102 Leidy Labs.
One-term course offered either term
Activity: Independent Study
1.0 Course Unit

BIOL 201 Essentials of Cell Biology
An intermediate level exploration of cell structure and function including membrane structure, intracellular organelles, membrane trafficking, surface receptors and signal transduction, the cytoskeleton, cell motility and communication, and the cell cycle. This course is open to students in the College of Liberal and Professional Studies only.
One-term course offered either term
Prerequisites: BIOL 101, 102 or 121
Activity: Lecture
1.0 Course Unit

BIOL 202 Essentials of Cell Biology
An intermediate level exploration of cell structure and function including membrane structure, intracellular organelles, membrane trafficking, surface receptors and signal transduction, the cytoskeleton, cell motility and communication, and the cell cycle. This course is open to students in the College of Liberal and Professional Studies only.
One-term course offered either term
Prerequisites: BIOL 101, 102 or 121
Activity: Lecture
1.0 Course Unit

BIOL 203 Essentials of Biochemistry
Intermediate level course covering principles of modern biochemistry. Topics include protein structure, protein purification and characterization, proteomics, enzyme kinetics and mechanisms, membrane structure and function, metabolism, and cellular energy transduction. Emphasis will be on biochemical problem solving, experimental design, and application of quantitative methods in a biological and clinical context. This course is open to students in the College of Liberal and Professional Studies only. Prerequisite: BIOL 101 and BIOL 102 or BIOL 121 and CHEM 241, the latter of which may be taken concurrently. CHEM 242 is recommended and may also be taken concurrently.
One-term course offered either term
Prerequisites: BIOL 101 and 102 or 121 and CHEM 241
Activity: Lecture
1.0 Course Unit

BIOL 204 Biochemistry
BIOL 204 examines the basic principles of protein structure, protein purification and characterization, proteomics, enzyme kinetics and mechanism, membrane structure and function, metabolism, and cellular energy transduction. The primary objective is to provide life scientists with an appreciation of basic principles of modern biochemistry, and of how the current conceptual and technical framework arose. Emphasis is placed on the experimental approaches and reasoning behind the dissection and reconstitution of these processes in a biological and, in some cases, clinical context. Discussions directed at biochemical problem solving, experimental design and the application of quantitative methods are integral to the course. Prerequisite: BIOL 101 and BIOL 102 or BIOL 121 and CHEM 241 the latter of which may be taken concurrently. CHEM 242 is recommended and may also be taken concurrently.
Taught by: Rea
Course usually offered in spring term
Prerequisites: BIOL 101 and 102 or 121 and CHEM 241
Activity: Lecture
1.0 Course Unit

BIOL 205 Cell Biology
A conceptual view of cell structure and function including membrane structure, intracellular organelles, membrane trafficking, surface receptors and signal transduction, the cytoskeleton, cell motility and communication, and the cell cycle. Cell biology is a dynamic field and recent research discoveries will be included in the lectures.
Taught by: Guo and Svitkina
Course usually offered in fall term
Prerequisites: BIOL 101 and 102 or 121
Activity: Lecture
1.0 Course Unit

BIOL 211 Essentials of Molecular Biology and Genetics
This course will survey the discipline of molecular genetics. Mendelian and molecular genetics will be discussed as well as the use of genetic analysis to address questions in all areas of biology. The processes of DNA replication, transcription, and translation will be discussed at the molecular level. Other topics include the regulation of gene expression and genomics. This course is open to students in the College of Liberal and Professional Studies only.
One-term course offered either term
Prerequisites: BIOL 101 and 102 or 121
Activity: Lecture
1.0 Course Unit
BIOL 213 Essentials of Vertebrate Physiology
A comparative and quantitative approach to the physiological function of vertebrates. Topics include muscles, nervous system, cardiovascular system, respiration, and renal function. This course is open to students in the College of Liberal and Professional Studies only.
One-term course offered either term
Prerequisites: BIOL 101 and 102 or BIOL 121 and 124
Activity: Lecture
1.0 Course Unit

BIOL 215 Vertebrate Physiology
The course will focus on integrative aspects of physiological function of vertebrates. Comparative, environmental and quantitative approaches will be used. Major topics include muscle, the cardiovascular system, respiration, renal function and the nervous system.
Taught by: Woodward
One-term course offered either term
Prerequisite: BIOL 102 or 121 or 124
Activity: Lecture
1.0 Course Unit

BIOL 221 Molecular Biology and Genetics
This course will survey the discipline of molecular genetics. Two broad areas will be considered 1) Molecular Biology: DNA replication, transcription, translation, regulation of gene expression in both prokaryotic and eukaryotic systems, and genomics and 2) Genetics: basic Mendelian & molecular genetics.
Taught by: Bonini/Gallagher/Guild/Levine
One-term course offered either term
Also Offered As: BIOL 527
Prerequisite: BIOL 101 or 121
Activity: Lecture
1.0 Course Unit

BIOL 230 Evolutionary Biology
Theories and mechanisms of evolution, with emphasis on the genetic basis of evolutionary change.
Taught by: Schmidt, P
Course usually offered in spring term
Prerequisites: BIOL 101 and 102, or BIOL 121
Activity: Lecture
1.0 Course Unit

BIOL 231 Evolution of Behavior: Animal Behavior
The evolution of social behavior in animals, with special emphasis on group formation, cooperation among kin, mating systems, territoriality and communication.
Course not offered every year
Also Offered As: BIBB 231, PSYC 231
Prerequisite: BIOL 102 or 121 or PSYC 001
Activity: Lecture
1.0 Course Unit

BIOL 240 Ecology: From individuals to ecosystems
The study of living organisms in their natural environment, spanning the ecological physiology of individuals, the structure of populations, and interactions among species, including the organization of communities and ecosystem function.
Taught by: Helliker/Akay
Course usually offered in fall term
Prerequisite: BIOL 102 or 121
Activity: Lecture
1.0 Course Unit
BIOL 325 Marine Biology
An introduction to marine biology and oceanography. Topics will include chemical and physical oceanography, a survey of form, function and phylogeny of algae, invertebrates and vertebrates, and an examination of ecological and evolutionary principles as applied to marine organisms and ecosystems.
Taught by: Barott
Course usually offered in fall term
Prerequisite: BIOL 102 or 121
Activity: Lecture
1.0 Course Unit

BIOL 330 Comparative Vertebrate Anatomy and Evolution
This course will survey the phylogeny and anatomy of vertebrate organisms from a comparative evolutionary perspective. The lecture will concentrate on the history, diversity, structure and function of vertebrates. A companion lab course, BIOL 336, is available for those students interested in a more complete understanding of vertebrate anatomy.
Taught by: Dunham
Course usually offered in spring term
Prerequisite: BIOL 102 or 121
Activity: Lecture
1.0 Course Unit

BIOL 336 Comparative Vertebrate Anatomy Lab
Laboratory portion of BIOL 330 Comparative Vertebrate Anatomy and Evolution. Students will learn comparative anatomy through dissection of representative vertebrates. Students taking the lab must have credit or register for the lecture course, BIOL 330.
Taught by: Dunham
Course usually offered in spring term
Prerequisite: BIOL 102 or 121
Activity: Laboratory
0.5 Course Units

BIOL 354 Developmental Biology
A view of how an animal embryo is specified to develop and differentiate into a wide spectrum of cell types, and how the spatial patterns and axes of embryos are determined. The course will focus on genetic and molecular approaches, but will also cover the comparative anatomy of developing embryos to the extent necessary to understand the conserved aspects of embryonic patterning. Special emphasis will be placed on organisms with particular advantages for the study of embryonic development: e.g., mouse, frog, zebrafish, and Drosophila. The first half of the course will cover cell fate restrictions, cloning animals using nuclear transfer, stem cell biology, formation of the embryonic axes in vertebrates and Drosophila, and patterning of the neural tube and mesodermal tissues. The second half of the course will focus on emerging ideas and findings in the field, with emphasis on analysis of original literature.
Taught by: Wagner J
Course usually offered in spring term
Prerequisite: BIOL 205 or 221
Activity: Lecture
1.0 Course Unit

BIOL 375 Microbial Diversity and Pathogenesis
Microbiology plays a central role in diverse areas of human life such as infectious disease, ecology, and biotechnology. This course will cover aspects of modern microbiology with an emphasis on prokaryotic organisms. The topics will include basic aspects of microbial diversity, genetics, virology, and pathogenesis as well as examples of applied microbiology.
Taught by: Pohlschroder
Course usually offered in spring term
Also Offered As: BIOL 575
Prerequisites: BIOL 101 and 102 or BIOL 121, BIOL 221
Activity: Lecture
1.0 Course Unit

BIOL 376 Microbial Diversity and Pathogenesis Lab
The importance of microbiology in complex issues, such as the impact of the microbiome in human health or as alternative energy sources, is being appreciated more and more each day. This upper level laboratory course provides students with a robust technical skill set while also giving them an opportunity to participate in an authentic research project that may lead to novel discoveries. Students will generate research questions, formulate hypotheses, design experiments, analyze data, and present their research findings to the class. In each project, students will use the cutting edge approach of metagenomics to evaluate the microbial diversity of their environment via Next Generation Sequencing. Students will also examine the function of microbial species within their communities. Potential projects include the isolation of novel antibiotic producers and the antibiotic they produce, designing and optimizing microbial fuel cells that can be used to generate electricity, or isolating antibiotic resistant bacteria and attempting novel approaches to inhibit or prevent their growth. Prerequisite: BIOL 375 previously or concurrently is recommended but not required.
Taught by: Pohlschroder and Hogan
Course usually offered in spring term
Also Offered As: BIOL 576
Prerequisite: BIOL 375
Activity: Laboratory
1.0 Course Unit

BIOL 399 Independent Study
Laboratory research with a faculty member in the Department of Biology. Research may also be conducted elsewhere on campus but co-sponsored by a faculty member in Biology. A final paper is required. Apply at the Biology Academic Office, 102 Leidy Labs.
One-term course offered either term
Activity: Independent Study
1.0 Course Unit
BIOL 400 Field Botany
This course focuses on teaching students the Pennsylvania flora, both native and naturalized. Through weekly field trips, students will gain an appreciation for the diversity of plant species and plant communities in PA, and observe and discuss ecological and historical forces that influence plant species occurrences and plant communities. The ability to quickly and accurately identify plants in the field, through both sight identification and the use of a dichotomous key, is the major thrust of this course. Students will also learn how to appropriately collect plant materials for further study/identification in the laboratory and for archiving in an herbarium collection.
Taught by: Block and Skema
Course usually offered in fall term
Prerequisite: BIOL 101 or 124
Activity: Laboratory
1.0 Course Unit

BIOL 401 Prokaryotic Microbiology: A Pragmatic View
This interactive course is intended for a small group of students aspiring to pursue research in microbiology, preferably using prokaryotes. Students will study selected papers and will attend the Prokaryotic Microbiology Seminars on Fridays. Specific problems of importance to a given field at a particular time will be critically analyzed and discussed. How were cutting edge techniques of the time used to address these problems? How would the same problems be approached using current techniques? The emphasis of the course will be on learning to become a thoughtful experimentalist rather than acquiring the hottest emerging knowledge. Prerequisite: BIOL 375 is recommended but not required.
Taught by: Daldal
Course usually offered in spring term
Activity: Seminar
1.0 Course Unit

BIOL 404 Immunobiology
Early development of microbiology, pathology, and immunobiology; molecular and cellular bases of immune phenomena including: immunity to pathogens, immune diseases, autoimmunity, and hypersensitivity.
This course is open to students in the College of Liberal and Professional Studies only.
One-term course offered either term
Prerequisites: BIOL 201 or 205 and BIOL 211 or 221
Activity: Lecture
1.0 Course Unit

BIOL 405 First Line of Defense: The Role of Innate Immunity in Disease
All organisms, from bacteria to humans, rely on innate, non-specific defense systems to protect against infection and mediate damage. Even in organisms that can generate highly specific and efficient adaptive responses, such as humans, defects in innate immune system components can be fatal. In this course, we will examine the cellular and molecular mechanisms of the components of the innate immune system through discussion of primary literature. We will explore how the innate immune system influences the course of infections and cancer, as well as autoinflammatory disorders that lead to host tissue damage. Though our focus will be on mammalian immunity, we will also explore the evolutionary development of innate immunity through comparison of systems in different organisms.
Taught by: Elliott
Course usually offered in fall term
Prerequisite: BIOL 205
Activity: Seminar
1.0 Course Unit

BIOL 406 Molecular Mechanisms of Infectious Disease Biology
This course is designed for advanced undergraduates and beginning graduate students with a particular interest in infectious disease biology. Note that this course is not a comprehensive survey of the field and is not appropriate for students seeking a lecture course on disease. The primary objective of this course is to teach students considering a career in the biomedical sciences how to read, discuss, and question research papers effectively. Intensive classroom discussions focus on the experimental methods used, results obtained, interpretation of these results in the context of pathogen interactions with host cells and organisms, and implications for basic research and therapeutic development. Prerequisite: BIOL 221 recommended.
Taught by: Roos
Course usually offered in spring term
Prerequisite: BIOL 205
Activity: Seminar
1.0 Course Unit

BIOL 410 Advanced Evolution
Mechanisms of evolution at the genetic and populational levels. Empirical and theoretical approaches to natural selection, population structure, gene flow, and quantitative genetics will be emphasized.
Taught by: Sniegowski/Plotkin
Course offered fall; odd-numbered years
Prerequisite: BIOL 230
Activity: Lecture
1.0 Course Unit

BIOL 411 Evolutionary Ecology
This course will focus on topics at the intersection of evolutionary biology and ecology, including the evolution of cooperation and conflict from genes to societies to ecological communities, life history evolution, and the evolution of interspecific interactions and ecological communities. The course will use a combination of lectures and discussion of readings from the primary literature.
Taught by: Linksvayer
Course usually offered in spring term
Prerequisite: BIOL 230 or 231 or 240
Activity: Seminar
1.0 Course Unit

BIOL 412 Animal Physiological and Population Ecology
This course explores the interactions of environmental variables, such as temperature, with the physiology of vertebrate animals and the mechanistic links of those interactions with population dynamics.
Taught by: Dunham
Course offered spring; even-numbered years
Prerequisite: BIOL 240
Activity: Seminar
1.0 Course Unit
BIOL 415 Freshwater Ecology
Survey of the physical, chemical and biological properties of freshwater ecosystems, both riverine and lentic, natural and polluted. Prerequisite: One semester of college chemistry.
Taught by: Arscott
Course usually offered in spring term
Also Offered As: ENVS 416
Prerequisite: BIOL 101 OR BIOL 121
Activity: Lecture
1.0 Course Unit

BIOL 417 Theoretical Population Biology
Introduction to basic theoretical tools to study the evolutionary and ecological dynamics of populations. Topics to be discussed include: basic population dynamics and population genetics theory, evolutionary game theory/adaptive dynamics, social evolution (kin selection/multilevel selection), life-history evolution, and stochastic models. Other topics may be added based on the specific interests of students in the class.
Taught by: Akcay
Course usually offered in spring term
Prerequisites: BIOL 230 and MATH 104
Activity: Seminar
1.0 Course Unit

BIOL 421 Molecular Genetics
A detailed analysis of gene structure and expression in both prokaryotic and eukaryotic organisms. Rapid advances in DNA technology and genomics will be emphasized. The application of these advances to the molecular genetic analysis of development, cell function and disease will be discussed.
Taught by: Weinberg
Course usually offered in fall term
Prerequisite: BIOL 221
Activity: Lecture
1.0 Course Unit

BIOL 423 Plant Ecology
The course consists of both lecture material and hands on research involving questions in plant population or community ecology. Quantitative information from published studies will be discussed and students, working in teams, will summarize and analyze data from class experiments. Prerequisite: A year of introductory biology or equivalent.
Taught by: Casper
Course not offered every year
Activity: Lecture
1.0 Course Unit

BIOL 425 Biochemistry and Molecular Genetics Superlab
Intensive laboratory class where open-ended, interesting biological problems are explored using modern lab techniques. Topics may include protein structure/function studies; genetic screens, genomics and gene expression studies; proteomics and protein purification techniques; and molecular cloning and DNA manipulation. The course emphasizes developing scientific communication and independent research skills. Course topics reflect the interests of individual Biology faculty members. This course is recommended for students considering independent research.
Taught by: Wagner J
One-term course offered either term
Prerequisite: BIOL 204 or 205 or 221
Activity: Laboratory
1.0 Course Unit

BIOL 430 Evolution and Ecology of Infectious Diseases
This course will focus on fundamental topics related to the ecological and evolutionary processes driving the transmission of pathogenic microbes among hosts including life-history strategies; evolution of pathogenic traits; the impacts of temporal, spatial and host-trait heterogeneity; and factors causing the emergence of an infectious pathogen. Examples will be drawn from human, wildlife, and plant pathogens to illustrate these ecological and evolutionary topics. Students will learn to develop and apply current ecological and evolutionary theory to infectious microbe research and gain practical experience accessing, interpreting and synthesizing the peer-reviewed scientific literature through a combination of popular and scientific readings, discussion, and lecture.
Taught by: Brisson
Course not offered every year
Prerequisite: BIOL 230 or BIOL 240
Activity: Seminar
1.0 Course Unit

BIOL 431 Genome Science and Genomic Medicine
This course will be a focused study of genomes, genomic techniques, and how these approaches are and will be used in diagnosing and treating human disease. Topics will include genome sequencing, analysis of sequences and microarrays, and new techniques including high-throughput sequencing and reverse genetic analysis with a focus on genome-wide mutant collections. Prerequisite: BIOL 421 strongly recommended.
Taught by: Gregory
Course usually offered in spring term
Also Offered As: CAMB 431
Prerequisite: BIOL 221
Activity: Lecture
1.0 Course Unit

BIOL 433 The Genetics of Adaptation: How sex, conflict, and pathogens shape modern genomes
In this course we explore the genetic basis of adaptation. We will investigate the forces that drive adaptation (e.g., environmental stress, pathogens, conflict, sex), the genetic mechanisms of adaptation (protein sequence changes, expression divergence, gene duplication, etc.), and the consequences of adaptation for contemporary cellular functions, developmental processes, and ecological interactions. The class meetings will be structured around both lectures and student-led discussions of the primary literature.
Taught by: Levine
Course usually offered in spring term
Prerequisite: BIOL 221 or 230
Activity: Seminar
1.0 Course Unit
BIOL 436 Molecular Physiology
This course is designed for advanced undergraduate and graduate students who are interested in molecular physiology of sensory signal transduction. The major topics to cover will be signal transduction mechanisms used by membrane ion channels and receptors that detect the sensory stimuli (light, sound, temperature and taste, for example) and transmit the signals to the nervous system. Modern molecular/structural techniques (patch clamp, protein crystallization, molecular genetics, expression cloning and protein purification) will be introduced along with each topic. References will be primary research articles. Students will critically evaluate research discoveries by reading and presenting one to two original research papers. Each student is required to write a 10-page research proposal and to critique proposals written by fellow students.
Taught by: Ren
Course usually offered in fall term
Prerequisite: BIOL 001 or BIOL 002
Activity: Seminar
1.0 Course Unit

BIOL 437 Introduction to Computational Biology & Biological Modeling
The goal of this course is to develop a deeper understanding of techniques and concepts used in Computational Biology. The course will strive to focus on a small set of approaches to gain both theoretical and practical understanding of the methods. We will aim to cover practical issues such as programming and the use of programs, as well as theoretical issues such as algorithm design, statistical data analysis, theory of algorithms and statistics. This course WILL NOT provide a broad survey of the field nor teach specific tools but focus on a deep understanding of a small set of topics. We will discuss string algorithms, hidden markov models, dimension reduction, and machine learning (or phylogeny estimation) for biomedical problems. Prerequisite: Probability theory and linear algebra are highly recommended.
Taught by: Kim
Course usually offered in fall term
Also Offered As: CIS 436
Prerequisite: MATH 104; BIOL 446
Activity: Lecture
1.0 Course Unit

BIOL 438 Systems Biology: Integrative physiology and biomechanics of the muscular system
The course will focus on muscle function from the level of molecules to whole animal locomotion. At each level of organization, muscle function will be explored from mechanical and energetic viewpoints. The course will include lectures, demonstrations, and several guest expert lectures. Students will also be introduced to realistic musculo-skeletal modelling and forward dynamic simulations to explore integrated function.
Taught by: Rome
Course usually offered in spring term
Prerequisite: BIOL 215 or 251
Activity: Lecture
1.0 Course Unit

BIOL 440 Advanced Analysis of Humans and the Environment
Advanced version of BIOL 140: Humans and the Environment. Additional readings and course work as directed.
For BA Students: Natural Science and Math Sector
Taught by: Janzen
Course usually offered in fall term
Also Offered As: BIOL 140
Prerequisite: Permission of instructor
Activity: Lecture
1.0 Course Unit

BIOL 442 Neurobiology of Learning and Memory
This course focuses on the current state of our knowledge about the neurobiological basis of learning and memory. A combination of lectures and student seminars will explore the molecular and cellular basis of learning in invertebrates and vertebrates from a behavioral and neural perspective.
Course usually offered in fall term
Also Offered As: BIBB 442, NGG 575, PSYC 421
Prerequisite: BIOL 251/BIBB 251 or PSYC 001 or permission of instructor
Activity: Seminar
1.0 Course Unit

BIOL 444 Molecular Evolution of Physiological Functions
This course is designed for students who are interested in understanding how physiological functions are achieved. Taking advantage of the recent explosion in genetic data and high-resolution protein structure analysis across organisms, the course focuses on the evolution of physiological functions at the genetic, structural, circuit and organismal levels. Examples include the co-evolution of toxins and toxin resistance between hunter and prey, the evolution of substance transport across cell membranes, intracellular signaling cascades, intercellular communication, distributed and centralized nervous systems, neural circuits controlling physiological functions such as feeding, locomotion and visual information processing. Students are expected to learn 1) basic physiological processes, their origin and adaptation, 2) modern genetic, structural and physiological techniques, 3) to critically evaluate research findings, 4) to present scientific papers, and 5) to write a research report.
Taught by: Ren
Course usually offered in fall term
Prerequisite: BIOL 109, 215, 221, or 251
Activity: Seminar
1.0 Course Unit

BIOL 446 Statistics for Biologists
Introductory probability theory. Principles of statistical methods. Problems of estimation and hypothesis testing in biology and related areas.
Taught by: Plotkin
Course usually offered in fall term
Prerequisite: MATH 104
Activity: Lecture
1.0 Course Unit
BIOL 448 Principles of Drug Action
Principles of Drug Action covers the concepts of pharmacological sciences as they relate to biochemistry, cell biology, and drug therapy. The intent of the course is to provide a solid grounding in targets of drug action, dose-response relationships, pharmacodynamics, and pharmacokinetics. The grounding is achieved by a discussion of these concepts explicitly and, through selected examples, implicitly. The first part of the course covers each of the concepts. Emphasis is placed on the integration with principles of cell biology and biochemistry. The second part of the course covers selected therapeutic applications. The applications chosen fall within four areas: cardiovascular, brain and behavior, antipyretic and anti-inflammatory, and antimicrobial. They are used to recapitulate important concepts and provide insight into the interplay between pharmacology and human physiology. The applications and the areas they represent are by no means comprehensive, but students will be able to pursue additional interests through papers. Prerequisite: BIOL 204 is recommended.
Taught by: Manning
Course usually offered in fall term
Prerequisite: BIOL 205
Activity: Lecture
1.0 Course Unit

BIOL 451 Neural Systems and Behavior
This course will investigate neural processing at the systems level. Principles of how brains encode information will be explored in both sensory (e.g. visual, auditory, olfactory, etc.) and motor systems. Neural encoding strategies will be discussed in relation to the specific behavioral needs of the animal. Examples will be drawn from a variety of different model systems.
Taught by: Schmidt, M.
Course usually offered in spring term
Also Offered As: BIBB 479, PSYC 479
Prerequisite: BIOL 251 or BIBB 251
Activity: Lecture
1.0 Course Unit

BIOL 456 Neural Circuits for Survival
A fundamental goal of neuroscience is to understand how neural circuits in the brain function to influence behavior. The aim of this course is to highlight the neural basis of behavior and discuss modern approaches and novel methods to study the neuronal control of classically studied aspects of behavior. Through a combination of discussions, student presentations, and interactive lectures, we will explore the neural systems that regulate the interactions an animal has with the external world. We will explore sensory systems (such as vision, taste, and olfaction), motor systems, and survival behaviors (such as feeding, drinking, mating, and aggression). The course evaluation will be based largely on written work, participation, and presentations.
Taught by: Betley
Course usually offered in spring term
Prerequisite: BIOL 251 or BIBB 251
Activity: Seminar
1.0 Course Unit

BIOL 464 Field Studies in Aquatic Microbial Ecology
This is a field and laboratory-based course that involves students in hands-on research methods in aquatic microbial ecology. Students will gain familiarity with experimental design, field measurements of environmental parameters (physical, chemical, and biological), sample collection techniques, and laboratory analyses required to assess the activity, health, and community composition of aquatic microbial ecosystems in an urban environment. We will compare and contrast various watersheds in and around the greater Philadelphia area, and students will design and conduct original independent research as a final course project. Prerequisite: Preference given to students who have completed BIOL 240.
Taught by: Sherwood
Course usually offered in spring term
Prerequisite: BIOL 101 or BIOL 121
Activity: Laboratory
1.0 Course Unit

BIOL 466 Molecular Genetics of Neurological Disease
This course will focus on the molecular basis of neurological diseases, exploring in detail key papers that cover topics including defining the disease genes, development of animal models that provide mechanistic insight, and seminal findings that reveal molecular understanding. Diseases covered will include neurological diseases of great focus today such as Alzheimer’s, Fragile-X and autism, dementia, motor neuron degeneration, and microsatellite repeat expansion disorders. The course will provide a perspective from initial molecular determination through current status. Students will gain an understanding of how the molecular basis of a disease is discovered (from classical genetics to modern genomics) and how such diseases can be modeled in simple genetic systems for mechanistic insight. The course will be comprised of lectures with detailed analysis of primary literature and in-class activities. Grading will be based on class participation, exams, and written papers. Prerequisite: BIOL 251 and BIOL 421 are recommended.
Taught by: Bonini
Course usually offered in fall term
Also Offered As: BIBB 466
Prerequisite: BIOL 221
Activity: Lecture
1.0 Course Unit

BIOL 469 Plant Physiology Through Space and Time
This course is a lab/lecture/seminar hybrid that will meet once per week for three hours. Each session will consist of mini-lecture/lab, paper discussions/lab, or solely lab efforts. All reading assignments will be available on Canvas (no textbook fees). We will examine various aspects of photosynthesis, water relations and nutrient acquisition in the context of the evolutionary progression of higher plants. With each subject, we will consider, measure, and in some cases model whole-plant physiology while examining sub-cellular-level controls and ecosystem-to-global-level consequences. This course is designed to give molecular biologists through earth-system scientists the tools to measure and understand whole-plant physiological responses to molecular manipulation and environmental variability. All students will learn to appreciate the context of their work on both micro and macro scales.
Taught by: Helliker
Course usually offered in spring term
Prerequisite: BIOL 240
Activity: Seminar
1.0 Course Unit
BIOL 475 Topics in Prokaryotic Biology: From Molecules to Microbiomes
This course will cover research articles from both the classic and contemporary literature on the genetics, cell biology, and physiology of prokaryotes. The material will focus on a small number of subjects in depth, with an emphasis on how the field has arrived at its current state of knowledge and on exciting new research directions. Possible topics include: stress responses, cell signaling, subcellular organization, bacteriophages, microbial communities, and host-microbe interactions. Taught by: Goulian
Course offered spring; even-numbered years
Prerequisite: BIOL 201, 205
Activity: Seminar
1.0 Course Unit

BIOL 477 The Science and Art of Biotechnology
Biotechnology transforms basic biological research into pharmaceutical therapies. This course will examine some explanations for American biotechnology vitality by studying case histories in which fundamental, biological observations were subsequently developed, successfully and unsuccessfully, for therapeutic applications. Along the way, we will also seek to understand the interactions among academic research institutions, biotechnology companies, large pharmaceutical companies, the Food and Drug Administration, financial institutions, venture groups, and the Patent and Trademark Office. Classes will be highly interactive. Students will present case histories in a critical fashion. Ultimately, students will conduct mock negotiations focused on university technology transfers, clinical trial design, financing, and intellectual property. Taught by: Roth
Course usually offered in fall term
Prerequisite: BIOL 204 or 205 or 221
Activity: Seminar
1.0 Course Unit

BIOL 480 Advanced Cell Biology
This course is designed for beginning graduate students and advanced undergraduates with a particular enthusiasm for cell biology. Biology 480 does not attempt to cover all aspects of cell biology, and is therefore not appropriate for students seeking a lecture course which provides a comprehensive survey of the field. Rather, the primary objective of this course is to teach those students considering a career in the biomedical sciences how to read, discuss, and question original research papers effectively. Intensive classroom discussions focus on the experimental methods used, results obtained, interpretation of these results in the context of cell structure and function, and implications for further studies. There is no assigned text; students learn to critically evaluate current literature by reading original papers on selected topics in modern cell biology. Accordingly, class participation/discussion is essential and the grade will be determined significantly by that. In addition, there will be two exams including answering short questions and an essay critiquing an original paper that is selected on a topic in Cell Biology. Taught by: Guo
Course usually offered in fall term
Also Offered As: CAMB 483
Prerequisites: BIOL 201, 205
Activity: Lecture
1.0 Course Unit

BIOL 482 Cell Signaling
The evolution of multicellularity required that cells be able to both send and receive signals from their neighbors. The development of organs and differentiation of cells and tissues requires reliable and continuous communication between cells. Consequences of inappropriate or anomalous signaling include development abnormalities and cancer. This class will examine mechanisms of cell-to-cell signaling between cells in plants and animals with an emphasis on the cell biology of development. Taught by: Gallagher
Course usually offered in fall term
Prerequisite: BIOL 205
Activity: Seminar
1.0 Course Unit

BIOL 483 Epigenetics
This course investigates epigenetic phenomena: heritable alternate states of gene activity that do not result from an alteration in nucleotide composition (mutations). Epigenetic mechanisms regulate genome accessibility and cell differentiation. They play a key role in normal development and in oncogenesis. For example both mammalian X-chromosome inactivation and nuclear transfer (cloning) are subject to epigenetic regulation. Amongst the epigenetic mechanisms we will discuss in this course are chromatin organization, histone modification, DNA methylation and non-coding RNAs. The course is geared toward advanced undergraduate and beginning graduate students and is a combination of lectures, student presentations and research presentations by guest speakers. Students will work with the current scientific literature. Taught by: Wagner D
Course usually offered in fall term
Also Offered As: CAMB 483
Prerequisite: BIOL 221
Activity: Lecture
1.0 Course Unit

BIOL 484 Cell Motility and the Cytoskeleton
Cytoskeleton and cell motility plays a crucial role in many aspects of normal and pathological physiology of individual cells, tissues, and whole organisms, including morphogenesis, immune response, wound healing, oncogenesis, and infection. This course will cover current topics in cell biology with emphasis on cytoskeleton and cell motility and their roles in these processes. Lectures, student presentations, and discussions in the class will be based on primary scientific literature. Taught by: Svitkina
Course usually offered in fall term
Prerequisite: BIOL 205
Activity: Seminar
1.0 Course Unit
BIOL 485 The RNA World: A functional and computational analysis
A focused study of genomic, biochemical, cellular, and molecular aspects of RNA. Topics of study will include RNA structure, RNA processing and turnover, splicing, ribozymes and riboswitches, RNA editing and modification, RNA interference, endogenous eukaryotic RNA silencing pathways, small RNA biology, computational methodologies for studying RNA biology, and RNA viruses. Lectures, students presentations, and discussions will be based on readings from the primary literature. Prerequisite: BIOL 421 strongly recommended Taught by: Gregory Course offered spring; even-numbered years Also Offered As: CAMB 485

BIOL 486 Chromosomes and the Cell Cycle
Life depends on the propagation of genetic material from one generation to the next through cycles of genome replication and cell division. The genome is copied by the parent, and one exact copy is inherited by each daughter cell. We will treat chromosomes as discrete entities, rather than collections of genes, that are replicated and divided with high fidelity to ensure that the genome remains stable over many generations. By reading selected primary literature covering several decades, we will build an understanding of the cell cycle by focusing on chromosomes and the associated molecular machinery. We will explore mechanisms that underlie replication and division, particularly control mechanisms that maintain genome integrity and are critical to prevent disease. The goal of the course is to develop a picture of the cell cycle by examining some of the key experiments and insights that have led to our current understanding. Taught by: Lampson Course offered spring; even-numbered years Also Offered As: CAMB 486

BIOL 493 Epigenetics of Human Health and Disease
Epigenetic alterations encompass heritable, non-genetic changes to chromatin (the polymer of DNA plus histone proteins) that influence cellular and organismal processes. This course will examine epigenetic mechanisms in directing development from the earliest stages of growth, and in maintaining normal cellular homeostasis during life. We will also explore how diverse epigenetic processes are at the heart of numerous human disease states. We will review topics ranging from an historical perspective of the discovery of epigenetic mechanisms to the use of modern technology and drug development to target epigenetic mechanisms to increase healthy lifespan and combat human disease. The course will involve a combination of didactic lectures, primary scientific literature and research lectures, and student-led presentations. Prerequisite: BIOL 483 recommended Taught by: Berger Course offered spring; odd-numbered years Also Offered As: CAMB 493, GCB 493

BIOL 499 Advanced Independent Study
A second semester of independent study, in most cases extending the research undertaken for the BIOL 399. Apply at the Biology Academic Office, 102 Leidy Labs. One-term course offered either term Activity: Independent Study

BIOL 522 Human Evolutionary Genomics
Advanced seminar on current topics in human genomics and human evolution. Topics include the methods used for mapping and sequencing genomes; phylogenetic and population genetic analysis; and detecting variation in the human genome. This course is designed for graduate students but advanced undergraduates with a strong background in genetics are also welcome. Taught by: Tishkoff Course offered spring; even-numbered years Also Offered As: CAMB 522

BIOL 527 Genetics for Computational Biology
This course will survey the discipline of molecular genetics. Two broad areas will be considered: 1) Molecular biology: DNA replication, transcription, translation, and the regulation of gene expression in both procaryotic and eukaryotic systems and genomics and 2) Genetics: basic Mendelian & molecular genetics. Taught by: Bonini/Gallagher/Guild/Keith One-term course offered either term Also Offered As: BIOL 221

BIOL 536 Fundamentals of Computational Biology
Introductory computational biology course designed for both biology students and computer science, engineering students. The course will cover fundamentals of algorithms, statistics, and mathematics as applied to biological problems. In particular, emphasis will be given to biological problem modeling and understanding the algorithms and mathematical procedures at the "pencil and paper" level. That is, practical implementation of the algorithms is not taught but principles of the algorithms are covered using small sized examples. Topics to be covered are: genome annotation and string algorithms, pattern search and statistical learning, molecular evolution and phylogenetics, functional genomics and systems level analysis. Prerequisite: College level introductory biology required; undergraduate or graduate level statistics taken previously or concurrently required; molecular biology and/or genetics encouraged; programming experience encouraged Taught by: Kim Course usually offered in fall term Also Offered As: CIS 536, GCB 536

BIOL 527 Genetics for Computational Biology
This course will survey the discipline of molecular genetics. Two broad areas will be considered: 1) Molecular biology: DNA replication, transcription, translation, and the regulation of gene expression in both procaryotic and eukaryotic systems and genomics and 2) Genetics: basic Mendelian & molecular genetics. Taught by: Bonini/Gallagher/Guild/Keith One-term course offered either term Also Offered As: BIOL 221

BIOL 527 Genetics for Computational Biology
This course will survey the discipline of molecular genetics. Two broad areas will be considered: 1) Molecular biology: DNA replication, transcription, translation, and the regulation of gene expression in both procaryotic and eukaryotic systems and genomics and 2) Genetics: basic Mendelian & molecular genetics. Taught by: Bonini/Gallagher/Guild/Keith One-term course offered either term Also Offered As: BIOL 221

BIOL 527 Genetics for Computational Biology
This course will survey the discipline of molecular genetics. Two broad areas will be considered: 1) Molecular biology: DNA replication, transcription, translation, and the regulation of gene expression in both procaryotic and eukaryotic systems and genomics and 2) Genetics: basic Mendelian & molecular genetics. Taught by: Bonini/Gallagher/Guild/Keith One-term course offered either term Also Offered As: BIOL 221
BIOL 540 Genetic Analysis
The logic and methodology of genetic analysis in plants and animals. This lecture course will focus on the use of mutations to study gene function and higher order biological processes, methods for reporting and manipulating gene expression, and analysis of the genetic basis of natural variation.
Taught by: Poethig
Course not offered every year
Prerequisite: BIOL 221
Activity: Lecture
1.0 Course Unit

BIOL 571 Topics in Computational Biology
Course for graduate students planning research in computational biology and genomics. Assigned readings will cover algorithms and data analysis techniques in computational biology. The course will include presentations and discussion of research problems involving computational analysis and there. Active group participation is required. Topics could include string algorithms, probability theory, multivariate statistics, molecular evolution, Markov Models, phylogenetic trees, and machine learning.
Taught by: Kim
Course not offered every year
Activity: Seminar
1.0 Course Unit

BIOL 575 Microbial Diversity and Pathogenesis
Advanced version of BIOL 375: Microbial Diversity and Pathogenesis for graduate students only. Additional readings and course work as directed.
Taught by: Pohlschroder
Course usually offered in spring term
Also Offered As: BIOL 375
Prerequisite: BIOL 221
Activity: Lecture
1.0 Course Unit

BIOL 576 Microbial Diversity and Pathogenesis Lab
Advanced version of BIOL 376: Microbial Diversity and Pathogenesis Lab for graduate students only. Additional readings and course work as directed.
Taught by: Pohlschroder and Hogan
Course usually offered in spring term
Also Offered As: BIOL 376
Prerequisites: Permission of instructor. BIOL 575 previously or concurrently is recommended but not required
Activity: Laboratory
1.0 Course Unit

BIOL 586 Topics in Mathematical Biology
This course will cover various mathematical models and tools that are used to study modern biological problems. The specific emphasis will vary from year to year, but typically will include an introduction to stochastic processes and computational methods that arise in evolutionary biology and population genetics. No prior knowledge of biology is needed to take this course, but a strong background in probability and familiarity with algorithms and combinatorics will be assumed. Prerequisite: MATH 241 and 340 are recommended
Course not offered every year
Also Offered As: MATH 586
Prerequisite: MATH 430
Activity: Lecture
1.0 Course Unit

BIOL 599 Master's Independent Study
Laboratory research for the Master’s of Science in Biology submatriculation program. Apply at the Academic Office, 102 Leidy Labs. One-term course offered either term
Activity: Independent Study
1.5 Course Unit

BIOL 607 Writing for Biologists
The course teaches scientific writing in a workshop format, where students both produce weekly writing assignments and critique writing submitted by others. Emphasis is placed on simplicity and clarity with the goal of writing effectively to a wide audience beyond the student’s immediate research area.
Taught by: Schmidt, P
Course usually offered in fall term
Activity: Seminar
1.0 Course Unit

BIOL 608 Communication for Biologists
Basic science writing and presentation skills for PhD students in Biology. Designed for second year graduate students preparing for qualifying exams. In the first half of the course, students will produce weekly writing assignments and critique writing submitted by others. In the second half, students will learn techniques for effective research presentations in both seminar style environments and chalk-talk settings.
Taught by: Schmidt/Plotkin
Course usually offered in spring term
Activity: Seminar
1.0 Course Unit

BIOL 700 Advanced Topics in Current Biological Research
Integrative seminar on current biological research for first-year PhD students.
Course usually offered in fall term
Activity: Seminar
1.0 Course Unit

BIOL 999 Independent Study and Research
Advanced laboratory research with a member of the Biology Graduate Group. May be taken for multiple course unit credit
One-term course offered either term
Activity: Independent Study
0.5 Course Units