CHEMICAL & BIOMOLECULAR ENGINEERING (CBE)

CBE 099 Undergraduate Research and Independent Study
An opportunity for the student to work closely with a professor in a project to develop skills and technique in research and development. To register for this course, the student writes a one-page proposal that is approved by the professor supervising the research and submitted to the undergraduate curriculum chairman during the first week of the term.
One-term course offered either term
Activity: Independent Study
1.0 Course Unit
Notes: A maximum of 2 c.u. of CBE 099 may be applied toward the B.S.E degree requirements

CBE 150 Introduction to Biotechnology
The goal of this course is to teach you the fundamentals of biotechnology and introduce you to concepts in Chemical Engineering along the way. Concepts in Biotechnology that will be covered include, DNA, RNA, the Central Dogma, proteins, recombinant technology, RNA silencing, electrophoresis, chromatography, synthetic biology, pull down assays, PCR, hybridization, array technology, DNA machines, DNA sequencing, and forensics. Concepts in Chemical Engineering that will be covered include the mass balance, scaling laws and the Buckingham-Pi theorem, kinetics of enzyme reactions, thermodynamics of molecular binding, the Langmuir isotherm, separations via chromatography. Reserved for Freshmen only.
Course usually offered in fall term
Activity: Lecture
1.0 Course Unit

CBE 160 Introduction to Chemical Engineering
Students will learn to read and understand a process flow sheet. There is a focus on drawing a process flow sheet, and formulating and solving the material balances for the chemical processes involving chemical reactions (some with recycle streams, some with purge streams, and some with bypass streams). Additionally, students will understand the limits of the ideal gas law, and have a working knowledge of the cubic equations of state and the concept of a compressibility factor. The class will study the basic concepts of gas-liquid phase equilibrium and apply Raoult's Law to solve phase equilibrium problems. A final objective is to design flow sheets and solve material balances for simple chemical processes using ASPEN (chemical engineering simulation program).
Course usually offered in spring term
Activity: Lecture
1.0 Course Unit

CBE 230 Material and Energy Balances of Chemical Processes
This course introduces the principles of material and energy balances and their applications to the analysis of single- and multiple-phase processes used in the chemical, pharmaceutical, and environmental industries. The course focuses on the conceptual understanding of properties of pure fluids, equations of state, and heat effects accompanying phase changes and chemical reactions, and problem-solving skills needed to solve a wide range of realistic, process-related problems.
Course usually offered in fall term
Prerequisite: CBE 160
Activity: Lecture
1.0 Course Unit

CBE 231 Thermodynamics of Fluids
Students will understand, evaluate, and apply different equations of state relating pressure, temperature, and volume for both ideal and non-ideal systems. The course will focus on calculating and applying residual properties and departure functions for thermodynamic analysis of non-ideal gases. Students will apply and describe simple models of vapor-liquid equilibrium in multi-component systems (e.g. Raoult’s Law, modified Raoult’s Law, Henry’s Law). Additionally, the class will analyze and describe properties of non-ideal mixtures and their component species. We will also model and predict reaction equilibria (including non-ideal fluid systems), as well as solve problems related to complex phase equilibria of multi-component systems (find equilibrium compositions for non-ideal phases).
Taught by: Amish Patel
Course usually offered in spring term
Prerequisite: CBE 230
Activity: Lecture
1.0 Course Unit

CBE 297 Study Abroad
One-term course offered either term
Activity: Lecture
1.0 Course Unit

CBE 320 Basic Chemical Process Safety
Chemical process safety is a scientific discipline as important as chemical production. What the students learn here could literally save their life. At the conclusion of the course, the expectation is that students should be able to identify hazards, safety risks and perform inherently safer design for chemical processes. By the end of the course, students will achieve Level I certification from SACHE (Safety and Chemical Engineering Education), a division of AIChE.
Taught by: Marylin Huff
Course not offered every year
Prerequisite: CBE 231 AND CBE 350
Activity: Lecture
1.0 Course Unit

CBE 325 Renewable Energy
This course covers engineering concepts for renewable energy processes. Fundamental engineering calculations for solar, wind, biofuel, geothermal, and hydroelectric energy production in comparison to oil and gas will be covered. Electric vehicles and energy storage will be discussed. Students will consider the specific needs of public health, safety and welfare in addition to global, cultural, social, environmental and economic factors will be in a particular country for a group project.
Taught by: Miriam Wattenbarger
Course usually offered in spring term
Prerequisite: CHEM 101 AND PHYS 141
Activity: Lecture
1.0 Course Unit
CBE 350 Fluid Mechanics
This course is designed for students to understand the fundamental characteristics of fluids. We will develop, starting from first principles, the basic equations for fluid statics, and use them to assess buoyancy forces and determine the pressure variations in fluids with rigid body rotation. Students will understand in detail the basic types of fluid flow line patterns (e.g., streamlines and streamtubes) and the different types of interchangeable energy forms (e.g., kinetic, potential, and pressure). It is also important to develop, starting from first principles, the formulations for inviscid and viscous flow problems. These include the discussion of a control system and system boundaries, the detailed construction of conservations equations of mass, energy, and momentum for Newtonian fluids, the derivation of the Navier-Stokes equations, and the determination of appropriate initial and boundary conditions. A final objective of the course is to solve various fluid mechanics problems using control systems, dimensional analysis, and developed equations. Such problems include, but are not limited to, the terminal velocity of a falling sphere, Stokes flow, the relation between the friction factor and the Reynolds number, and flow profiles in numerous geometries.
Taught by: John Crocker
Course usually offered in fall term
Prerequisite: CBE 231
Activity: Lecture
1.0 Course Unit

CBE 351 Heat and Mass Transport
Course usually offered in spring term
Prerequisite: CBE 350
Activity: Lecture
1.0 Course Unit

CBE 353 Molecular Thermodynamics and Chemical Kinetics
Taught by: Aleksandra Vojvodic
Course usually offered in fall term
Prerequisite: CBE 231
Activity: Lecture
1.0 Course Unit

CBE 355 Chemical Process Control
Taught by: Robert Riggelman
Course usually offered in spring term
Prerequisite: CBE 230
Activity: Lecture
1.0 Course Unit

CBE 371 Separation Processes
The design of industrial methods for separating mixtures. Distillation; liquid-liquid extraction; membranes; absorption. Computer simulations of the processes.
Course usually offered in spring term
Prerequisite: CBE 231
Activity: Lecture
1.0 Course Unit

CBE 375 Engineering and the Environment
The course will introduce emerging environmental issues, relevant engineering solutions, and problem-solving techniques to students. The case study approach will be used to assist students to develop and apply the fundamental engineering skills and scientific insights needed to recognize a variety of environmental problems that have profound impacts on all aspects of modern society. Sophomore standing required to enroll.
Course usually offered in spring term
Prerequisite: Sophomore Standing
Activity: Lecture
1.0 Course Unit

CBE 400 Introduction to Product and Process Design
Introduction to product design, process synthesis, steady-state and batch process simulation, synthesis of separation trains, second-law analysis, heat integration, heat-exchanger design, equipment sizing, and capital cost estimation.
Course usually offered in fall term
Prerequisites: CBE 351, 371
Corequisite: CBE 451
Activity: Lecture
1.0 Course Unit

CBE 410 Chemical Engineering Laboratory
Experimental studies in heat and mass transfer, separations and chemical reactors to verify theoretical concepts and learn laboratory techniques. Methods for analyzing and presenting data. Report preparation and the presentation of an oral technical report.
Taught by: Huff, Marylin
Course usually offered in fall term
Prerequisites: CBE 351, 371
Activity: Laboratory
1.0 Course Unit

CBE 430 Introduction to Polymers
Polymer is one of the most widely used materials in our daily life, from the rubber tires to clothes, from photoresists in chip manufacturing to flexible electronics and smart sensors, from Scotch tapes to artificial tissues. This course teaches entry-level knowledge in polymer synthesis, characterization, thermodynamics, and structure-property relationship. Emphasis will be on understanding both chemical and physical aspects of polymers, polymer chain size and molecular interactions that drive the microscopic and macroscopic structures and the resulting physical properties. We will discuss how to apply polymer designs to advance nanotechnology, electronics, energy and biotechnology. Case studies include thermodynamics of block copolymer thin films and their applications in nanolithography, shape memory polymers, hydrogels, and elastomeric deformation and applications.
Course usually offered in fall term
Also Offered As: CBE 510, MSE 430, MSE 580
Prerequisites: MSE 260 or CBE 231, CHEM 221, MEAM 203
Activity: Lecture
1.0 Course Unit
CBE 451 Chemical Reactor Design
Course usually offered in fall term
Prerequisite: CBE 231 AND 351
Activity: Lecture
1.0 Course Unit

CBE 459 Product and Process Design Projects
Design of chemical, biochemical, and materials products and processes based on recent advances in chemical and bioengineering technology. Design group weekly meetings with faculty advisor and industrial consultants. Comprehensive design report and formal oral presentation. Heat exchanger design and profitability analysis.
Course usually offered in spring term
Prerequisite: CBE 400
Activity: Lecture
1.0 Course Unit

CBE 460 Chemical Process Control
Course usually offered in spring term
Prerequisite: CBE 230
Activity: Lecture
1.0 Course Unit

CBE 479 Biotechnology and Biochemical Engineering
An overview of biotechnology from a chemical engineering perspective: DNA, enzymes, proteins, molecular genetics, genetic engineering, cell growth kinetics, bioreactors, transport processes, protein recovery and protein separations. Group projects include a MATLAB kinetics project and a biotechnology company profile. Applications to current practices in biopharmaceuticals, biofuels, and bioremediation are discussed. Junior/ Senior Standing in Engineering
Course usually offered in fall term
Prerequisite: CBE 150
Activity: Lecture
1.0 Course Unit

CBE 480 Laboratory in Biotechnology and Genetic Engineering
The laboratory methods covered include molecular cloning techniques, cell transformation, DNA gel electrophoresis, ImageJ, PCR, DNA sequencing, SDS-PAGE, mammalian cell culture and enzyme assays. Culture techniques for bacteria, yeast and mammalian cells are taught and practiced. The students write several individual lab reports and keep a weekly lab notebook during the semester. A group presentation and report on a proposal for a new lab experiment is the final assignment for the lab.
Course usually offered in spring term
Prerequisite: CBE 479
Activity: Laboratory
1.0 Course Unit

CBE 505 Carbon Capture
Carbon dioxide capture and sequestration has recently emerged as one of the key technologies needed to meeting growing worldwide energy demand while simultaneously reducing carbon dioxide emissions into the atmosphere. The objective of this course is to provide a quantitative introduction into the science and technology of carbon dioxide capture and sequestration. The following topics will be covered. General CO2 chemistry as it applies to capture and sequestration. Applied thermodynamics including minimal work and efficiency calculations for separation. CO2 separation from syngas and flue gas for gasification and combustion processes and the potential for direct air capture. Transportation of CO2 in pipelines and sequestration in deep underground geological formations. Pipeline specifications, monitoring, safety engineering, and costs for long distance transport of CO2. Comparison of options for geological sequestration in oil and gas reservoirs, saline aquifers, and mineral formations. Environmental risk assessment and management. Life cycle analysis
Taught by: Jennifer Wilcox
Course usually offered in spring term
Activity: Lecture
1.0 Course Unit

CBE 506 Introduction to High-Performance Scientific Computing
Research problems in the domain of physical, biological and biomedical sciences and engineering often span multiple time and length-scales from the molecular to the organ/organism, owing to the complexity of information transfer underlying biological mechanisms. Multiscale modeling (MSM) and high-performance scientific computing (HPC) have emerged as indispensable tools for tackling such complex problems. However, a paradigm shift in training is now necessary to leverage the rapid advances, and emerging paradigms in HPC — GPU, cloud, exascale supercomputing, quantum computing — that will define the 21st century. This course is a collaboration between Penn, UC Berkeley, and the Extreme Science and Engineering Discovery Environment (XSEDE) which administers several of the federally funded research purpose supercomputing centers in the US. It will be taught as a regular 1 CU course at Penn by adopting a flip-classroom/active learning format. The course is designed to teach students how to program parallel architectures to efficiently solve challenging problems in science and engineering, where very fast computers are required either to perform complex simulations or to analyze enormous datasets. The course is intended to be useful for students from many departments and with different backgrounds, e.g., scholar of Penn Institute for Computational Science, although we will assume reasonable programming skills in a conventional (non-parallel) language, as well as enough mathematical skills to understand the problems and algorithmic solutions presented. Taught by: Ravi Radhakrishnan
One-term course offered either term
Also Offered As: BE 516
Activity: Lecture
1.0 Course Unit
CBE 510 Introduction to Polymers
Polymer is one of the most widely used materials in our daily life, from the rubber tires to clothes, from photoresists in chip manufacturing to flexible electronics and smart sensors, from Scotch tapes to artificial tissues. This course teaches entry-level knowledge in polymer synthesis, characterization, thermodynamics, and structure-property relationship. Emphasis will be on understanding both chemical and physical aspects of polymers, polymer chain size and molecular interactions that drive the microscopic and macroscopic structures and the resulting physical properties. We will discuss how to apply polymer designs to advance nanotechnology, electronics, energy and biotechnology. Case studies include thermodynamics of block copolymer thin films and their applications in nanolithography, shape memory polymers, hydrogels, and elastomeric deformation and applications.
Course usually offered in fall term
Also Offered As: CBE 430, MSE 430, MSE 580
Prerequisites: MSE 260 or CBE 231, CHEM 221, MEAM 203
Activity: Lecture
1.0 Course Unit

CBE 511 Physical Chemistry of Polymers and Amphiphiles
This course deals with static and dynamic properties of two important classes of soft materials: polymers and amphiphiles. Examples of these materials include DNA, proteins, diblock copolymers, surfactants and phospholipids. The fundamental theories of these materials are critical of understanding polymer processing, nanotechnology, biomembranes and biophysics. Special emphasis will be placed on understanding the chain conformation of polymer chains, thermodynamics of polymer chains, thermodynamics of polymer solutions and melts, dynamics of polymer and statistical thermodynamic principles of self-assembly.
Course usually offered in fall term
Activity: Lecture
1.0 Course Unit

CBE 515 Chemical Product Design
Introduction to product design, molecular and mixture design, functional and formulated product design, design of device products, pharmaceutical product and process design, optimal batch process design strategies, batch process simulation, six-sigma design
Taught by: Warren D. Seider
Activity: Lecture
1.0 Course Unit

CBE 517 Principles of Genome Engineering
This course covers up-to-date techniques in genome engineering and its application in basic research and translational medicine. Genetic engineering techniques including site-directed DNA recombination (Cre-Lox, Phi31 integrase), genome editing (TALEN, CRISPR/Cas-9), next generation sequencing, and molecular imaging will be covered. Key concepts in genomics, epigenetics, gene regulation will be introduced, and application of genetic engineering techniques in the field of developmental biology, stem cell biology, and synthetic biology will be discussed.
Course usually offered in spring term
Activity: Lecture
1.0 Course Unit

CBE 522 Polymer Rheology and Processing
This course focuses on applications of rheology to polymer process technologies. It includes a general review of rheological concepts, including viscoelasticity and the influence of shear rate, temperature and pressure on polymer flow properties. The course covers the elementary processing steps common in various types of polymer manufacturing operations including handling of particulate solids, melting, pressurizing and pumping, mixing and devolatilization. Specific polymer processing operations including extrusion, injection molding, compression molding, fiber spinning and wire coating are covered. Emerging polymer processing applications in microelectronics, biomedical devices and recycling are also discussed.
One-term course offered either term
Prerequisites: MEAM 302 and 333 or CBE 350 and 351
Activity: Lecture
1.0 Course Unit

CBE 525 Molecular Modeling and Simulations
Students will explore current topics in thermodynamics through molecular simulations and molecular modeling. The requisite statistical mechanics will be conveyed as well as the essential simulation techniques (molecular dynamics, Monte Carlo, etc.). Various approaches for calculating experimentally measurable properties will be presented and used in student projects.
Course usually offered in fall term
Prerequisite: CBE 231 OR CBE 618
Activity: Lecture
1.0 Course Unit

CBE 535 Interfacial Phenomena
This course provides an overview of fundamental concepts in colloid and interface science. Topics include the thermodynamics of interfaces, interfacial interactions (e.g. van der Waals interactions, electrostatics, steric interactions), adsorption, the hydrodynamics and stability of interfacial systems, self assembly, etc. Connections to self-assembly and directed assembly of nanomaterials and emerging topics are explored.
Pre-requisites: undergraduate thermodynamics, some familiarity with concepts of transport phenomena (including fluid flow and mass transfer) and differential equations
One-term course offered either term
Activity: Lecture
1.0 Course Unit

CBE 540 Biomolecular and Cellular Engineering
This course will introduce concepts and methods for the quantitative understanding of molecular and cellular phenomena. Topics include molecular recognition, receptor-ligand binding, viral infection, signal transduction, cell adhesion, motility, and cytoskeletal dynamics. The course requires mathematics at the level of differential equations, and some knowledge of Matlab programming. A basic knowledge of cell biology is suggested, although not required.
One-term course offered either term
Also Offered As: BE 540
Activity: Lecture
1.0 Course Unit
CBE 541 Engineering and Biological Principles in Cancer
This course provides an integrative framework and provides a quantitative foundation for understanding molecular and cellular mechanisms in cancer. The topics are divided into three classes: (1) the biological basis of cancer; (2) cancer systems biology; and (3) multiscale cancer modeling. Emphasis is placed on quantitative models and paradigms and on integrating bioengineering principles with cancer biology. Prerequisite: Seniors in BE or permission of the instructor. Course usually offered in spring term
Also Offered As: BE 541
Activity: Lecture
1.0 Course Unit

CBE 544 Computational Science of Energy and Chemical Transformations
Our theoretical and computational capabilities have reached a point where we can do predictions of materials on the computer. This course will introduce students to fundamental concepts and techniques of atomic scale computational modeling. The material will cover electronic structure theory and chemical kinetics. Several well-chosen applications in energy and chemical transformations including study and prediction of properties of chemical systems (heterogeneous, molecular, and biological catalysts) and physical properties of materials will be considered. This course will have modules that will include hands-on computer lab experience and teach the student how to perform electronic structure calculations of energetics which form the basis for the development of a kinetic model for a particular problem, which will be part of a project at the end of the course. Thermodynamics, Kinetics, Physical Chemistry, Quantum Mechanics. Undergraduates should consult and be given permission by the instructor.
One-term course offered either term
Activity: Lecture
1.0 Course Unit

CBE 545 Electrochemical Energy Conversion and Storage
Fuel cells, electrolysis cells, and batteries are all electrochemical devices for the interconversion between chemical and electrical energy. These devices have inherently high efficiencies and are playing increasingly important roles in both large and small scale electrical power generation, transportation (e.g. hybrid and electric vehicles), and energy storage (e.g. production of H2 via electrolysis). This course will cover the basic electrochemistry and materials science that is needed in order to understand the operation of these devices, their principles of operation, and how they are used in modern applications. Prerequisite: Introductory chemistry and an undergraduate course in thermodynamics (e.g. CBE 231, MEAM, 203)
One-term course offered either term
Prerequisites: CBE 231, MEAM 203
Activity: Lecture
1.0 Course Unit

CBE 546 Fundamentals of Industrial Catalytic Processes
A survey of heterogeneous catalysis as applied to some of the most important industrial processes. The tools used to synthesize and characterize practical catalysts will be discussed, along with the industrial processes that use them.
Course usually offered in spring term
Activity: Lecture
1.0 Course Unit

CBE 547 Computational Science of Energy and Chemical Transformations
Our theoretical and computational capabilities have reached a point where we can do predictions of materials on the computer. This course will introduce students to fundamental concepts and techniques of atomic scale computational modeling. The material will cover electronic structure theory and chemical kinetics. Several well-chosen applications in energy and chemical transformations including study and prediction of properties of chemical systems (heterogeneous, molecular, and biological catalysts) and physical properties of materials will be considered. This course will have modules that will include hands-on computer lab experience and teach the student how to perform electronic structure calculations of energetics which form the basis for the development of a kinetic model for a particular problem, which will be part of a project at the end of the course. Thermodynamics, Kinetics, Physical Chemistry, Quantum Mechanics. Undergraduates should consult and be given permission by the instructor.
One-term course offered either term
Activity: Lecture
1.0 Course Unit

CBE 548 Computational Science of Energy and Chemical Transformations
Our theoretical and computational capabilities have reached a point where we can do predictions of materials on the computer. This course will introduce students to fundamental concepts and techniques of atomic scale computational modeling. The material will cover electronic structure theory and chemical kinetics. Several well-chosen applications in energy and chemical transformations including study and prediction of properties of chemical systems (heterogeneous, molecular, and biological catalysts) and physical properties of materials will be considered. This course will have modules that will include hands-on computer lab experience and teach the student how to perform electronic structure calculations of energetics which form the basis for the development of a kinetic model for a particular problem, which will be part of a project at the end of the course. Thermodynamics, Kinetics, Physical Chemistry, Quantum Mechanics. Undergraduates should consult and be given permission by the instructor.
One-term course offered either term
Activity: Lecture
1.0 Course Unit

CBE 549 Computational Science of Energy and Chemical Transformations
Our theoretical and computational capabilities have reached a point where we can do predictions of materials on the computer. This course will introduce students to fundamental concepts and techniques of atomic scale computational modeling. The material will cover electronic structure theory and chemical kinetics. Several well-chosen applications in energy and chemical transformations including study and prediction of properties of chemical systems (heterogeneous, molecular, and biological catalysts) and physical properties of materials will be considered. This course will have modules that will include hands-on computer lab experience and teach the student how to perform electronic structure calculations of energetics which form the basis for the development of a kinetic model for a particular problem, which will be part of a project at the end of the course. Thermodynamics, Kinetics, Physical Chemistry, Quantum Mechanics. Undergraduates should consult and be given permission by the instructor.
One-term course offered either term
Activity: Lecture
1.0 Course Unit

CBE 550 Computational Science of Energy and Chemical Transformations
Our theoretical and computational capabilities have reached a point where we can do predictions of materials on the computer. This course will introduce students to fundamental concepts and techniques of atomic scale computational modeling. The material will cover electronic structure theory and chemical kinetics. Several well-chosen applications in energy and chemical transformations including study and prediction of properties of chemical systems (heterogeneous, molecular, and biological catalysts) and physical properties of materials will be considered. This course will have modules that will include hands-on computer lab experience and teach the student how to perform electronic structure calculations of energetics which form the basis for the development of a kinetic model for a particular problem, which will be part of a project at the end of the course. Thermodynamics, Kinetics, Physical Chemistry, Quantum Mechanics. Undergraduates should consult and be given permission by the instructor.
One-term course offered either term
Activity: Lecture
1.0 Course Unit

CBE 554 Engineering Biotechnology
Advanced study of re DNA techniques; bioreactor design for bacteria, mammalian and insect culture; separation methods; chromatography; drug and cell delivery systems; gene therapy; and diagnostics. Course usually offered in spring term
Also Offered As: BE 554
Activity: Lecture
1.0 Course Unit

CBE 555 Nanoscale Systems Biology
Nano-science and engineering approaches to systems in biology are of growing importance. They extend from novel methods, especially microscopies that invite innovation to mathematical and/or computational modeling which incorporates the physics and chemistry of small scale biology. Proteins and DNA, for example, are highly specialized polymers that interact, catalyze, stretch and bend, move, and/or store information. Membranes are also used extensively by cells to isolate, adhere, deform, and regulate reactions. In this course, students will become familiar with cell & molecular biology and nanobiotechnology through an emphasis on nano-methods, membranes, molecular machines, and ‘polymers’ - from the quantitative perspectives of thermodynamics, statistical physics, and mechanics. We specifically elaborate ideas of energetics, fluctuations and noise, force, kinetics, diffusion, etc. on the nano- thru micro- scale, drawing from very recent examples in the literature. Laboratory experiments will provide hands-on exposure to microscopies in a biological context (e.g. fluorescence down to nano-scale, AFM), physical methods (eg. micromanipulation, tracking virus-scale particles or quantum dots), and numerical problems in applied biophysics, chemistry, and engineering. A key goal of the course is to familiarize students with the concepts and technology (plus their limitations) as being employed in current research problems in nanoscale systems biology, extending to nanobiotechnology. Prerequisite: Background in Biology, Physics, Chemistry or Engineering with coursework in Thermodynamics or permission of the instructor. Taught by: Discher
Course usually offered in fall term
Also Offered As: BE 554
Activity: Lecture
1.0 Course Unit

CBE 556 The Biochemical Engineering of Wine
This course surveys the biochemistry and biochemical unit operations involved in the commercial production of modern wines. Topics will include grape growing, pressing, fermentation, filtration, and packaging/aging. Emphasis will also be placed on yeast microbiology and wine biochemistry. Lectures will be supported by wine tasting sessions to highlight the important characteristics of different wine types. Course usually offered in spring term
Activity: Lecture
1.0 Course Unit
Notes: This course can only be used as a Technical Elective in SEAS
CBE 557 Stem Cells, Proteomics and Drug Delivery - Soft Matter Fundamentals
Lectures on modern topics and methods in cell and molecular biology and biomedicine from the perspective of soft matter science and engineering. Discussions and homeworks will cover soft matter related tools and concepts used to 1) isolate, grow, and physically characterize stem cells, 2) quantify biomolecular profiles, 3) deliver drugs to these cells and other sites (such as tumors with cancer stem cells) will be discussed. Skills in analytical and professiona presentations, papers and laboratory work will be developed. Background in Biology, Physics, Chemistry or Engineering.
Course usually offered in spring term
Activity: Lecture
1.0 Course Unit

CBE 559 Multiscale Modeling of Chemical and Biological Systems
This course provides theoretical, conceptual, and hands-on modeling experience on three different length and time scales - (1) electronic structure (A, ps); (2) molecular mechanics (100A, ns); and (3) deterministic and stochastic approaches for microscale systems (um, sec). Students will gain hands-on experience, i.e., running codes on real applications together with the following theoretical formalisms: molecular dynamics, Monte Carlo, free energy methods, deterministic and stochastic modeling, multiscale modeling. Prerequisite: Undergraduate courses in numerical analysis and physical chemistry. Taught by: Ravi Radhakrishnan
Course not offered every year
Also Offered As: BE 559, SCMP 559
Activity: Lecture
1.0 Course Unit

CBE 562 Drug Discovery and Development
Intro to Drug Discovery; Overview of Pharmaceutical Industry and Drug Development Costs, Timelines; High Throughput Screening (HTS); Assay Design and Sensitivity Solid Phase Synthesis and Combinatorial Chemistry; Enzyme Kinetics; Fluorescence, Linearity, Inner-filter effect, quenching; Time dynamics of a Michaelis-Menten Reaction; Competitive Inhibitor; FLINT, TRET, TRF; FP SPA, alpha-screen; Enzyme HTS (proteinase); Cell based screening; Fura-2 ratio, loading signaling; Gp4calmodulin-gfp integrated calcium response; Estrogen/ERE-Luc HTS; Problems with cell based screening (toxicity, permeability, nonspecificity); Instrumentation, Robotics/Automation; Z-factor; SAR, Positioning Scanning; Microarray HTS; IC50, % Conversion in HTS and IC50, Assay Optimization. Course usually offered in fall term
Also Offered As: BE 562
Activity: Lecture
1.0 Course Unit

CBE 564 Drug Delivery
The topics include drug transport, distribution and interactions in the body, specific challenges for biotherapeutics, pharmacokinetics, drug delivery systems and nanocarriers, gene delivery systems, targeted drug delivery, and translational aspects of new drug delivery systems. Faculty from engineering and medicine will give lectures related to their research interests. The students read current journal articles on drug delivery systems. The major group assignment for the course is a written and oral group proposal on a new drug delivery system. One-term course offered either term
Also Offered As: PHRM 564
Activity: Lecture
1.0 Course Unit

CBE 570 Experimental Methods for Polymer Science and Soft Matter - Theory and Practice
This course covers the relevant theory and practical application of experimental methods used to study the structure, dynamics and physico-chemical properties of soft matter and macromolecular materials. Systems of interest include self-assembled polymers and (macro)molecular materials, liquid crystals, colloidal suspensions, biological materials, gels, and other complex fluids. Particular emphasis is placed on the development of kinematic theory for X-ray scattering, methods of structure determination by (x-ray/electron) diffraction, microscopy (optical; atomic force; electron), dynamic scattering (light/optical; xray; neutron) and rheology (bulk and microrheology). Thermo-mechanical, electronic and optical property characterization are also addressed. Lectures are complemented by lab exercises and projects. The subject matter is particularly relevant for students conducting experimental research on macromolecular materials, soft matter and complex fluids. Senior standing or permission of the instructor. Course usually offered in spring term
Activity: Lecture
1.0 Course Unit

CBE 580 Masters Biotech Lab.
The laboratory methods covered include molecular cloning techniques, cell transformation, DNA gel electrophoresis, ImageJ, PCR, DNA sequencing, SDS?PAGE, mammalian cell culture, and enzyme assays. Culture techniques for bacteria, yeast and animal cells are taught and practiced. The students write several individual lab reports and keep a lab notebook during the semester. A group presentation and report on a proposal for a new lab experiment is the final assignment for the lab. One-term course offered either term
Activity: Lecture
1.0 Course Unit
Notes: Reserved for students in the Master of Biotechnology Program. Not open to SEAS undergraduates.

CBE 597 Master's Thesis Research
One-term course offered either term
Activity: Masters Thesis
1.0 Course Unit

CBE 599 Master's Indep Study
One-term course offered either term
Activity: Independent Study
1.0 Course Unit

CBE 602 Statistical Mechanics of Liquids
The course will focus on advanced concepts and methods in statistical mechanics with a particular emphasis on the liquid state, e.g. aqueous solutions, capillarity, polymers, colloids, glasses, amphiphilic self-assemble, etc. Principles of both equilibrium and non-equilibrium statistical mechanics will be discussed and connections to experimentally measurable quantities will be made wherever possible. One-term course offered either term
Prerequisites: CBE 618, MSE 575, BE 619, BMB 604, PHYS 581, CHEM 521 and PHYS 611 and CHEM 522
Activity: Lecture
1.0 Course Unit
CBE 618 Advanced Molecular Thermodynamics
This course begins with a brief review of classical thermodynamics, including the development of Maxwell relationships and stability analysis. The remainder of the course develops the fundamental framework of statistical mechanics, then reviews various related topics including ideal and interacting gases, Einstein and Debye models of crystals, lattice models of liquids, and the basis of distribution function theory.
Course usually offered in fall term
Also Offered As: BE 662, MEAM 662
Activity: Lecture
1.0 Course Unit

CBE 621 Advanced Chemical Kinetics and Reactor Design
Course usually offered in fall term
Activity: Lecture
1.0 Course Unit

CBE 640 Transport Processes I
This course provides a unified introduction to momentum, energy (heat), and mass transport processes. The basic mechanisms and constitutive laws for the various transport processes will be delineated, and the conservation equations will be derived and applied to internal and external flows. Examples from mechanical, chemical, and biological systems will be used to illustrate fundamental concepts and mathematical methods.
Course usually offered in fall term
Activity: Lecture
1.0 Course Unit

CBE 641 Transport Processes II (Nanoscale Transport)
A continuation of CBE 640, with additional emphasis on heat and mass transport. This course aims to teach transport concepts and methods useful in many current CBE laboratory settings. The emphasis will be on microscopic dynamics and transport in both hard and soft systems (e.g. colloids and polymers), of relevance to a variety of biological and biomolecular systems. Wherever possible, will make connections between classical, macroscopic transport, and what is happening microscopically. Will make use of a comination of analytic and algorithmic/numerical methods to facilitate understanding of the material. Physical topics will include stochastic, "single-molecule", non-ideal, hard sphere and frustrated systems, phase transitions, non-equilibrium statistical mechanics and optics. Concepts will include properties of stochastic functions (Gaussian statistics, correlation functions and power spectra), Fourier methods, Convolution, the Central Limit theorem, anomalous diffusion, percolation, and the Fluctuation/Dissipation theorem. Computational methods will concentrate on Monte Carlo simulations of "toy" models.
Course usually offered in spring term
Activity: Lecture
1.0 Course Unit

CBE 895 Teaching Practicum
This course provides training in the practical aspects of teaching. The students will work with a faculty member to learn and develop teaching and communication skills. As part of the course, students will participate in a range of activities that may include: giving lectures, leading recitations, supervising laboratory experiments, developing instructional laboratories, developing instructional material, preparing and grading homework assignments and solution sets, and preparing examinations. Feedback on the recitations will be provided to the student by the faculty responsible for the course. The course is graded on a Satisfactory/Unsatisfactory basis. The evaluation will be based on comments of the students taking the course and the impressions of the faculty.
Taught by: John Crocker
One-term course offered either term
Activity: Lecture
0.0 Course Units

CBE 899 Independent Study
One-term course offered either term
Activity: Independent Study
1.0 Course Unit

CBE 990 Masters Thesis
For Master’s students who have completed the course requirements for the Master’s degree and are strictly working to complete the Master’s Thesis leading to the completion of a Master’s degree. Permission Required.
One-term course offered either term
Activity: Masters Thesis
1.0 Course Unit

CBE 995 Dissertation
One-term course offered either term
Activity: Dissertation
1.0 Course Unit

CBE 999 Thesis/Dissertation Research
For students working on an advanced research program leading to the completion of master’s thesis or Ph.D. dissertation requirements. One-term course offered either term
Activity: Independent Study
1.0 Course Unit