GEOL 100 Introduction to Geology
An introduction to processes and forces that form the surface and the interior of the Earth. Topics include, changes in climate, the history of life, as well as earth resources and their uses.
For BA Students: Physical World Sector
Taught by: Omar
Course usually offered in fall term
Activity: Lecture
1.0 Course Unit
Notes: Field trips required.

GEOL 103 Natural Disturbances and Human Disasters
Natural disturbances play a fundamental role in sculpturing landscapes and structuring natural and human-based ecosystems. This course explores the natural and social science of disturbances by analyzing their geologic causes, their ecological and social consequences, and the role of human behavior in disaster reduction and mitigation. Volcanoes, earthquakes, floods, droughts, fires, and extraterrestrial impacts are analyzed and compared.
For BA Students: Physical World Sector
Taught by: Phipps
Course usually offered in fall term
Activity: Lecture
1.0 Course Unit

GEOL 109 Introduction to Geotechnical Science
Open to architectural and engineering majors as well as Ben Franklin Scholars. Field trips. Relations of rocks, rock structures, soils, ground water, and geologic agents to architectural, engineering, and land-use problems.
For BA Students: Physical World Sector
Taught by: Omar
Course usually offered in fall term
Activity: Lecture
1.5 Course Unit

GEOL 111 Geology Laboratory
Taught by: Omar
One-term course offered either term
Prerequisite: GEOL 100 preferably taken concurrently
Activity: Laboratory
1.0 Course Unit
Notes: Field trips required.

GEOL 125 Earth and Life Through Time
Origin of Earth, continents, and life. Continental movements, changing climates, and evolving life.
For BA Students: Physical World Sector
Taught by: Perez-Rodriguez
One-term course offered either term
Activity: Lecture
1.0 Course Unit

GEOL 130 Oceanography
The oceans cover over 2/3 of the Earth's surface. This course introduces basic oceanographic concepts such as plate tectonics, marine sediments, physical and chemical properties of seawater, ocean circulation, air-sea interactions, waves, tides, nutrient cycles in the ocean, biology of the oceans, and environmental issues related to the marine environment.
For BA Students: Physical World Sector
Taught by: Dmochowski
Course usually offered in spring term
Activity: Lecture
1.0 Course Unit

GEOL 201 Mineralogy
Crystallography, representative minerals, their chemical and physical properties. Use of petrographic microscope in identifying common rock-forming minerals in thin section.
For BA Students: Physical World Sector
Taught by: Phipps
Course usually offered in fall term
Also Offered As: GEOL 531
Prerequisites: GEOL 100 and CHEM 001 or 101
Activity: Lecture
1.0 Course Unit

GEOL 204 Global Climate Change
Public perceptions and attitudes concerning the causes and importance of globalwarming have changed. Global Climate Change provides a sound theoretical understanding of global warming through an appreciation of the Earth's climate system and how and why this has changed through time. We will describe progress in understanding of the human and natural drivers of climate change, climate processes and attribution, and estimates of projected future climate change. We will assess scientific, technical, and socio-economic information relevant for the understanding of climate change, its potential impacts and options for adaptation and mitigation.
For BA Students: Physical World Sector
Taught by: Marinov
Course usually offered in fall term
Prerequisite: Any of the following courses: ENVS 100 or GEOL 100 or GEOL 130 or GEOL 125 or GEOL 103 or Instructor Permission
Activity: Lecture
1.0 Course Unit

GEOL 205 Paleontology
Geologic history of invertebrates and their inferred life habits, paleoecology, and evolution. Introduction to paleobotany and vertebrate paleontology.
For BA Students: Living World Sector
Taught by: Sallan
Course usually offered in spring term
Activity: Lecture
1.0 Course Unit
Notes: Two field trips required.
GEOL 206 Stratigraphy
Introductory sedimentary concepts, stratigraphic principles, depositional environments, and interpretation of the rock record in a paleoecological setting.
Taught by: Jerolmack
Course usually offered in fall term
Also Offered As: GEOL 506
Prerequisite: GEOL 100 or permission of instructor
Activity: Lecture
1.0 Course Unit
Notes: Two field trips, field project

GEOL 208 Structural Geology
Introduction to deformation as a fundamental geologic process. Stress and strain; rock mechanics. Definition, measurement, geometrical and statistical analysis, and interpretation of structural features. Structural problems in the field. Maps, cross-sections, and three-dimensional visualization; regional structural geology.
Taught by: Phipps
Course usually offered in spring term
Prerequisites: GEOL 100 and 111; PHYS 150 strongly recommended
Activity: Lecture
1.0 Course Unit
Notes: Three field trips required

GEOL 299 Independent Study
Directed study for individuals or small groups under close supervision of a faculty member.
One-term course offered either term
Prerequisite: Permission of department
Activity: Independent Study
1.0 Course Unit
Notes: May be repeated for credit

GEOL 317 Petrology and Petrography
Occurrences and origins of igneous and metamorphic rocks; phase equilibria in heterogeneous systems. Laboratory study of rocks and thin sections as a tool in interpretation of petrogenesis.
Taught by: Omar
Course usually offered in spring term
Also Offered As: GEOL 417
Prerequisite: GEOL 201
Activity: Lecture
1.0 Course Unit
Notes: Two field trips

GEOL 318 Glaciers, Ice & Climate
All forms of frozen water at Earth’s surface define the cryosphere. These icy environments are an integral part of the global climate system, with important linkages and feedbacks resulting from their influences on surface energy and moisture fluxes, clouds, precipitation, hydrology, and circulation in the atmosphere and oceans. This course will survey the various components of the cryosphere and their interactions with climate, with a strong emphasis on the dynamics of glaciers and ice sheets. Broad topics to be covered are 1) the rudimentary mechanics of glacier and ice sheet flow, 2) fast-flowing ice streams and factors limiting their motion, 3) ice-quakes and their origins, 4) the nature of climate data recorded in natural ice bodies, 5) the influence of climate on the stability of ice sheets and glaciers, and 6) glacier-like flow on other planetary bodies. This will be a lecture-based course with written assignments and problems sets.
Taught by: Goldsby
Prerequisites: Students should have basic knowledge of Calculus. MATH 114 or equivalent.
Activity: Lecture
1.0 Course Unit

GEOL 399 Geology Research Seminar for Juniors
This seminar is designed to help Juniors prepare for the Senior Thesis research. Topic selection, advisor identification, funding options, and basic research methods will be discussed.
Taught by: Andrews
Course usually offered in spring term
Also Offered As: ENVS 399
Activity: Seminar
1.0 Course Unit

GEOL 400 Topics in Earth Science
In depth examination of special topics in Earth Science. Topics will change with instructor and course offerings.
Taught by: TBA
Activity: Seminar
1.0 Course Unit

GEOL 405 Advanced Paleontology
Relationship of fossil assemblages to life assemblages; structure of ancient communities, and interaction of organisms with each other and with the physical environment; evolution of communities.
Taught by: Sallan
Course usually offered in fall term
Prerequisite: Permission of instructor
Activity: Lecture
1.0 Course Unit

GEOL 409 Intro to Remote Sensing
This course will introduce students to the principles of remote sensing, characteristics of remote sensors, and remote sensing applications. Image acquisition, data collection in the electromagnetic spectrum, and data set manipulations for earth and environmental science applications will be emphasized. We will cover fundamental knowledge of the physics of remote sensing; aerial photographic techniques; multispectral, hyperspectral, thermal, and other image analysis. Students will pursue an independent research project using remote sensing tools, and at the end of the semester should have a good understanding and the basic skills of remote sensing.
Taught by: Dmochowski
Also Offered As: GEOL 509
Prerequisites: PHYS 151 and MATH 114 or equivalent are preferable, but not required. See instructor.
Activity: Seminar
1.0 Course Unit
GEOL 411 Intro Soil Science
Soil is considered the “skin of the Earth”, with interfaces between the lithosphere, hydrosphere, atmosphere, and biosphere. It is a mixture of minerals, organic matter, gases, liquids and a myriad of organisms that can support plant life. As such, soil is a natural body that exists as part of the environment. This course will examine the nature, properties, formation and environmental functions of soil.
Taught by: Plante
Prerequisite: GEOL 100 or equivalent
Activity: Lecture
1.0 Course Unit

GEOL 417 Advanced Petrology
Chemistry, physics, phase equilibria, microscope study in igneous and metamorphic petrology.
Taught by: Omar
Course usually offered in fall term
Also Offered As: GEOL 317
Prerequisite: GEOL 317
Activity: Lecture
1.0 Course Unit

GEOL 418 Geochemistry
This course provides a comprehensive introduction to theory and applications of chemistry in the earth and environmental sciences. Theory covered will include atomic structure, chemical bonding, cosmic abundances, nucleosynthesis, radioactive decay, dating of geological materials, stable isotopes, acid-base equilibria, salts and solutions, and oxidation-reduction reactions. Applications will emphasize oceanography, atmospheric sciences and environmental chemistry, as well as other topics depending on the interests of the class. Although we will review the basics, this course is intended to supplement, rather than to replace, courses offered in the Department of Chemistry. It is appropriate for advanced undergraduate as well as graduate students in Geology, Environmental Science, Chemistry and other sciences, who wish to have a better understanding of these important chemical processes.
Taught by: Giere
Course not offered every year
Activity: Lecture
1.0 Course Unit

GEOL 420 Introduction to Geophysics
This course will cover the application of geophysical investigation techniques to problems of the earth's plantary structure, local subsurface structure and mineral prospecting. The topics will include principles of geophysical measurements and interpretation with emphasis on gravity measurement, isostasy, geomagnetism, seismic refraction and reflection, electrical prospecting, electromagnetics and groung radar.
Taught by: Goldsby
Course not offered every year
Prerequisites: GEOL 100 or 109, two semesters Math and Physics, and/or instructor's permission
Activity: Lecture
1.0 Course Unit

GEOL 421 Biogeochemistry
Humans have an enormous impact on the global movement of chemical materials. Biogeochemistry has grown to be the principal scientific discipline to examine the flow of elements through the global earth systems and to examine human impacts on the global environment. This course will introduce and investigate processes and factor controlling the biogeochemical cycles of elements with and between the hydrosphere, lithosphere, atmosphere and biosphere. Students will apply principles learned in lectures by building simple computer-based biogeochemical models.
Taught by: Plante
Course usually offered in spring term
Also Offered As: GEOL 541
Prerequisites: ENVS 200, GEOL 100, or permission of the instructor
Activity: Lecture
1.0 Course Unit

GEOL 424 Geomicrobiology
Taught by: Perez-Rodriguez
Prerequisites: Biol 101, or Chem 101 or permission by instructor
Activity: Lecture
1.0 Course Unit
Notes: Microorganisms inhabit almost every conceivable environment on the planet's surface, and extent the biosphere to depths of several kilometers into the crust. Significantly, the chemical reactivity and metabolic diversity displayed by microbial communities make them integral components of global elemental cycles, from mineral dissolution and precipitation reactions, to aqueous reduction-oxidation processes. In that regard, microorganisms have helped shape our planet over the past 4 billion years and made it habitable for higher forms of life. In this course we will evaluate the geological consequences of microbial activities, by taking an interdisciplinary and "global" view of microbe-environment interactions.

GEOL 430 Atmospheric Chemistry
An introduction to the chemistry of the earth's atmosphere. Covers evolution of the earth's atmosphere, its physical and chemical structure, its natural chemical composition and oxidative properties, and human impacts, including photochemistry, and aerosols; stratospheric ozone loss, tropospheric pollution; climate change, and acidic deposition. Chemistry in the atmosphere of other planets in our solar system will be covered.
Taught by: Francisco
Course usually offered in fall term
Activity: Lecture
1.0 Course Unit

GEOL 477 Introduction to Vertebrate Paleontology
Taught by: Dodson
Course not offered every year
Prerequisites: GEOL 100, BIOL 101, GEOL 205 or similar course.
Activity: Lecture
1.0 Course Unit
GEOL 479 Macroevolution
Macroevolution, or evolution above the population level and on long timescales, as a field addresses fundamental questions about the origins of life, past and present. These include but are not limited to: How are highly dissimilar species related? Why are animals on distant continents so similar? How and when did major groups, like birds or mammals, originate? What drives evolutionary arms races? Why are there so many more species of beetle than crocodile? Why are there more species in the tropics than the arctic? Did dinosaurs prevent the diversification of mammals? Why do some animals survive mass extinction? How can invasive species spread so rapidly? Students will learn important concepts underlying our understanding of modern biodiversity and the fossil record, as well as how to use different methods and lines of evidence, including evolutionary trees (phylogeny), fossil databases, past climate and global events, mathematical modeling, and even modern genomics, to answer fundamental questions about the evolution of life.
Taught by: Lauren Sallan
Activity: Lecture
1.0 Course Unit

GEOL 498 Senior Thesis
The culmination of the Earth Science major. Students, while working with an advisor in their concentration, conduct research and write a thesis.
Taught by: Dmochowski
Two terms. Student may enter either term.
Prerequisites: GEOL400-level and declaration of the EASC major
Activity: Senior Thesis
0.5 Course Units
Notes: The Earth Science major, as of the fall of 2008, requires 1 semester of GEOL399 and two semesters of GEOL498.

GEOL 508 The Geology and Geography of Energy Resources
This course will survey the way geology controls the formation and location of energy resources. Questions we'll address include, “How are oil and gas fields formed?” “What are the best locations in the US for wind and solar energy generation, and why?” We will discuss hydrocarbon, nuclear, solar, wind, and tidal energy sources.
Taught by: Phipps
Course not offered every year
Prerequisite: Geol100 or equivalent is preferred
Activity: Seminar
1.0 Course Unit
Notes: Possible field trips.

GEOL 509 Intro to Remote Sensing
This course will introduce graduate students to the principles of remote sensing, characteristics of remote sensors, and remote sensing applications. Image acquisition, data collection in the electromagnetic spectrum, and data set manipulations for earth and environmental science applications will be emphasized. We will cover fundamental knowledge of the physics of remote sensing; aerial photographic techniques; multispectral, hyperspectral, thermal, and other image analysis. Students will pursue an independent research project using remote sensing tools, and at the end of the semester should have a good understanding and the basic skills of remote sensing. Expectations for the graduate student independent research projects will be at the graduate level and can relate to their capstone or Ph.D. thesis research topics.
Taught by: Dmochowski
Also Offered As: GEOL 409
Prerequisites: PHYS151 and MATH114 or equivalent are preferable, but not required. See instructor.
Activity: Seminar
1.0 Course Unit

GEOL 510 Geophysical Fluid Dynamics
This class will discuss physical principles fundamental to the theoretical, observational, and experimental study of geophysical fluids, the equations of motion for rotating fluids; hydrostatic and Boussinesq approximations; circulation theorem; conservation of potential vorticity; scale analysis, geostrophic wind, quasigeostrophic system; wave theory and applications, flow instabilities, geophysical boundary layers. Depending on student interest, the class will be adapted to include applications from Oceanography, Meteorology, Geophysics or Engineering.
Taught by: Nathan Paldor
Prerequisites: Math 114 or equivalent or permission by the instructor.
Activity: Lecture
1.0 Course Unit

GEOL 515 Evolution/Revolution of Land Ecosystems
Origin and diversification of land ecosystems. Interaction between plants and animals. Effects of past climatic change and other external factors. The importance of past changes in land ecosystems to our understanding of current global change.
Taught by: Sallan
Course not offered every year
Activity: Seminar
1.0 Course Unit

GEOL 516 Paleocology Discovering Lost Ecosystems
Paleoecology, or ecology in the fossil record, is the study of how interactions between species have developed over time and how ecosystems and environmental change have shaped the evolution of life and biodiversity. It also involves rebuilding lost communities from fossil evidence to provide context for the origins of modern life and modern ecosystems. This seminar course will survey major topics in Paleoecology, including of ecosystems, the long-term connections between habitat, life mode and biodiversity as well as the distribution of life (e.g. paleobiogeography), escalation between predators and prey, competition between invasive and resident species, and how we can infer the ecology and behavior of long-dead organisms. Students will lead discussions on select concepts and choose one topic to investigate in depth.
Course not offered every year
Activity: Seminar
1.0 Course Unit
GEOL 528 Aqueous Geochemistry
This course is designed to provide the graduate student with an understanding of the fundamentals of aqueous geochemistry. The chemistry of water, air, and soil will be studied from an environmental perspective. The nature, composition, structure, and properties of pollutants coupled with the major chemical mechanisms controlling the occurrence and mobility of chemicals in the environment will also be studied. Upon completion of this course, students should expect to have attained a broad understanding of and familiarity with aqueous geochemistry concepts applicable to the environmental field. Environmental issues that will be covered include acid deposition, toxic metal contamination, deforestation, and anthropogenic perturbed aspects of the earth’s hydrosphere.
Taught by: Andrews
Course not offered every year
Prerequisites: GEOL 100 Intro to Geology or permission of instructor.
Activity: Lecture
1.0 Course Unit

GEOL 531 Advanced Mineralogy
Advanced crystallography, representative minerals, their chemical and physical properties. Use of petrographic microscope in identifying common rock-forming minerals in thin section.
Taught by: Omar
Course usually offered in fall term
Also Offered As: GEOL 201
Activity: Lecture
1.0 Course Unit

GEOL 540 Geotectonics
Bulk structure of the Earth. Plate tectonics and plate boundaries. Plumes, rifting, and intraplate tectonics. Geotectonics and seismicity.
Taught by: Phipps
Course not offered every year
Prerequisites: GEOL 205, 206, 208, 317 and 420, or permission of instructor
Activity: Lecture
1.0 Course Unit
Notes: Field trip

GEOL 541 Advanced Geochemistry
Taught by: Plante
Course usually offered in spring term
Also Offered As: GEOL 421
Activity: Lecture
1.0 Course Unit

GEOL 599 Independent Study
Directed study for individuals or small groups under supervision of a faculty member.
One-term course offered either term
Activity: Independent Study
1.0 Course Unit

GEOL 604 Geostatistical Analysis
Univariate and multivariate approaches to the analysis of spatial correlation and variability. Many disciplines, including geology, ecology and the environmental sciences regularly need to analyze and make predictions from data that is spatially autocorrelated. Mine reserve estimation, pollutant dispersal and the use of randomization tests in ecology are examples of where spatial statistics may be applied.
Taught by: Vann
Course usually offered in fall term
Prerequisites: STAT 101 or equivalent statistics course; BioL 556 suggested or other Inferential Statistics courses, covering uni- and multivariate techniques
Activity: Lecture
1.0 Course Unit

GEOL 611 Field Study of Soils
Processes of soil development in a variety of temperate environments. Effects of lithology and climate on soil properties.
Taught by: Plante
Course usually offered in spring term
Prerequisite: GEOL 511 or permission of instructor
Activity: Seminar
1.0 Course Unit
Notes: All day field trips

GEOL 615 Advanced Vertebrate Paleontology Seminar
Topics in vertebrate paleontology and paleoecology.
Taught by: Dodson
One-term course offered either term
Activity: Seminar
1.0 Course Unit
Notes: May be repeated for credit

GEOL 618 Fundamentals of Air Pollution
This course will cover various topics related to Air Quality. Initial lectures will cover the history of air pollution, discussions of the Clean Air Act and composition of the atmosphere. We will then progress to discussion of atmospheric pollutants and sources of those pollutants. Additional topics will include: fate of atmospheric pollutants (transport and dispersion mechanisms will include: fate of atmospheric pollutants (transport and mechanisms), effects of air pollution (health and environmental effects), urban smog, acid rain, climate change, ozone depletion in the stratosphere, air quality criteria, and engineering controls.
Taught by: Andrews
Course usually offered in spring term
Activity: Seminar
1.0 Course Unit

GEOL 619 Instrumentation for the Geosciences
An introduction to the theory, operation and application of modern analytical instrumentation used in geo- and environmental sciences. Primarily focused on laboratory instrumentation such as mass spectroscopy, elemental analyses and x-ray techniques. Some field instruments will be introduced as well. Students will be expected to develop projects utilizing the various instruments.
Taught by: Vann
Course usually offered in spring term
Activity: Lecture
1.0 Course Unit
GEOL 620 Applied and Environmental Geophysics
The application of geophysical investigation techniques to problems of the local and shallow subsurface structure of the earth. The application of geophysical measurements and interpretation for environmental site characterizations, locating buried structures, groundwater investigations, and identifying geotechnical hazards with emphasis on gravity methods, seismic refraction and reflection, electrical resistivity, electromagnetic methods, ground penetrating radar, and borehole nuclear logging.
Taught by: Sauder
Course usually offered in fall term
Activity: Lecture
1.0 Course Unit
Notes: MSAG Required Course

GEOL 621 Field Methods in Biogeochemistry
This field- and lab-based course will examine a set of methods for the study and quantification of biochemical processes in terrestrial and aquatic systems. We will focus on field-based measurements, as well as sample collection and laboratory analyses of fluxes of carbon and nutrient elements, including photosynthesis, respiration, dissolved and suspended nutrient fluxes in streams.
Taught by: Plante
Course usually offered summer term only
Activity: Seminar
1.0 Course Unit

GEOL 650 Environmental Due Diligence
Evaluation of environmental contamination and liability is an important tool during acquisition of real estate property, and a standard work product in the environmental consulting field. This course will cover the purpose and history of the Superfund law, the various classifications of Superfund liable parties, and protections against Superfund liability, specifically with regard to bona fide prospective purchasers (BFPP).
In the context of the BFPP liability defense the course will focus on the performance of "All Appropriate Inquiry" for the presence of environmental contamination (e.g. Phase I environmental site assessment). Our study of "All Appropriate Inquiry" will include evaluation of historical maps and other resources, aerial photography, chain-of-title documentation, and governmental database information pertaining to known contaminated sites in the area of select properties on or near campus. Site visits will be performed to gain experience and knowledge for the identification of recognized environmental conditions. Students will prepare environmental reports for select properties and will have an opportunity to hone technical writing skills.
Taught by: Cron
Course usually offered in spring term
Activity: Seminar
1.0 Course Unit

GEOL 653 Introduction to Hydrology
Introduction to the basic principles of the hydrologic cycle and water budgets, precipitation and infiltration, evaporation and transpiration, stream flow, hydrograph analysis (floods), subsurface and groundwater flow, well hydraulics, water quality, and frequency analysis.
Taught by: Sauder
Course usually offered in fall term
Activity: Lecture
1.0 Course Unit

GEOL 654 Geomechanics: Solids
Mechanical properties of solid and fluid earth materials, stress and strain, earth pressures in soil and rock, tunnels, piles, and piers; flow through gates, wiers, spillways and culverts, hydraulics, seepage and Darcy’s law as applied to the hydrologic sciences.
Taught by: Duda
Course usually offered in fall term
Activity: Seminar
1.0 Course Unit

GEOL 656 Fate and Transport of Pollutants
This course covers basic groundwater flow and solute transport modeling in one-, two- and three-dimensions. After first reviewing the principles of modeling, the student will gain hands-on experience by conducting simulations on the computer. The modeling programs used in the course are MODFLOW (USGS), MT3D, and the US Army Corps of Engineers GMS (Groundwater Modeling System).
Taught by: Mastropaolo
Course usually offered in spring term
Activity: Lecture
1.0 Course Unit

GEOL 658 Environmental Statistical Analysis
Statistical analysis of data from geological, geotechnical, and geohydrologic sources.
Taught by: Mastropaolo
One-term course offered either term
Activity: Seminar
1.0 Course Unit

GEOL 661 Environmental Groundwater Hydrology
This course is designed to introduce the major definitions and concepts regarding groundwater flow and contaminant transport. The theory and underlying concepts, including mathematical derivations of governing equations used to model groundwater flow and contaminant transport, will be discussed and applications to environmental problems addressed. Upon completion of this course, students should expect to have acquired the skills necessary to pursue course work in flow and transport numerical and analytical modeling.
Taught by: Mastropaolo
Course usually offered in spring term
Activity: Lecture
1.0 Course Unit
GEOL 663 Geochemical Modeling
This course is designed to introduce the major concepts regarding geochemistry and geochemical modeling. The course introduces two United States Geological Survey (USGS) computer models, PHREEQC, a geochemical speciation model, and PHAST, a transport module which is coupled with PHREEQC output. These are highly respected, world-renowned models that are free-ware via the USGS, complete with documentation. Once familiar with the models, the student can continue to work with them beyond the course experience. PHREEQC is designed to perform a wide variety of aqueous geochemical calculations and can be used to simulate chemical reactions and transport processes in natural or polluted waters. PHREEQC is capable of modeling both equilibrium and kinetic reactions. Some of the simulations pursued during the course include: Speciation of precipitation water; Iron speciation; Zinc sorption onto hydrous ferric oxide; Oxidation of organic carbon and the sequence of electron donors in natural waters; Benzene advective transport in groundwater; TCE transport and degradation. Taught by: Mastropaolo
Course usually offered in spring term
Activity: Lecture
1.0 Course Unit

GEOL 666 Geology Field Work
Directed independent field work. Taught by: Giegengack
One-term course offered either term
Activity: Independent Study
1.0 Course Unit
Notes: 4-8 weeks during the summer.

GEOL 668 Geomechanics: Fluids
Static and Dynamic mechanical properties of fluid in earth materials, as applied to the Hydrologic Sciences; Principles of Fluid Mechanics and Hydraulics applied to open channel flow in earth materials; flow through gates, weirs, spillways, and culverts; Applications of Darcy’s Law to subsurface flow and seepage. Taught by: Duda
Course usually offered in spring term
Activity: Lecture
1.0 Course Unit

GEOL 670 Engineering Geology: Rock Mechanics
This course focuses on the rock mechanics aspects of Engineering Geology. The theme is characterization of the geologic environment for engineering and environmental investigations. Covered are the various exploration tools and methods, including: Collection and analysis of existing engineering data; Interpretation of remotely sensed imagery; Field and laboratory measurements of material properties; Measurement and characterization of rock discontinuities; Rock slope stability analysis; Stress, strain and failure of rocks and the importance of scale; Rock core logging; Rock mass rating; Rock support and reinforcement; Rock excavation, blasting and blast monitoring and control. Taught by: Freed
Course usually offered in fall term
Activity: Lecture
1.0 Course Unit

GEOL 671 Engineering Geology: Surficial Materials & Processes
As the human population continues to grow, the environment and earth’s resources become more important. This course will concentrate on the occurrence and distribution of earth’s surficial materials and their engineering and environmental properties. The engineering classification, testing, and use of the earth materials will be emphasized. The geohazards of surficial processes will also be studied in the context of geologic history and the planning and use of the geologic environment. Taught by: Freed
Course usually offered in spring term
Activity: Lecture
1.0 Course Unit

GEOL 680 Interpretation of Near-surface Geologic Structure for Engineering and Environment
The course introduces the basic principles of structural geology and their applications to engineering and environmental site characterization. Includes the mechanisms for the deformation and failure of the earth’s crust, folded and faulted structures, and the orthogonal and stereographic solutions to characterize near-surface geologic structure. It also includes the construction and interpretation of geologic maps, geologic cross sections and block diagrams. Emphasis is placed on the graphical representation of subsurface data, including the use of selected computer programs, and the integration of the data to solve problems encountered in engineering and environmental projects. Taught by: Freed
Course usually offered in spring term
Activity: Lecture
1.0 Course Unit

GEOL 699 Project Design
This course is designed to prepare Master of Science in Applied Geosciences students to undertake their Project Design exercise. In this course, we discuss how to identify an appropriate research project, how to design a research plan, and how to prepare a detailed proposal. By the end of the course, each student is expected to have completed a Project Design proposal. Course usually offered in spring term
Activity: Seminar
1.0 Course Unit

GEOL 750 Topics in Earth Science
This course will use the weekly EES seminar series to survey historic breakthrough papers or topics in the earth sciences, as well as modern papers - written by the seminar speakers - that often put the classics in perspective. Graduate students (Ph.D. only) in the Department of Earth and Environmental Science will engage in the material through reading, presentation, and discussion. The course has several goals. (1.) To engender an understanding and appreciation of major breakthroughs in our field. (2.) To develop skills in presenting and discussing scientific results. And (3.) to refine students’ understanding of what constitutes great science. Taught by: Sallan
Activity: Seminar
1.0 Course Unit
Notes: Open only to PhD students
GEOL 999 Independent Study and Research
Directed study for individuals or small groups under supervision of a faculty member.
One-term course offered either term
Prerequisite: Permission of departmental committee
Activity: Independent Study
1.0 Course Unit
Notes: Hours and credits to be arranged.