INTEGRATED PRODUCT DESIGN (IPD)

IPD 500 Product Engineering Basics
The course targets non-engineering majors interested in understanding engineering approaches to product fabrication. The course covers a broad variety of engineering topics including mechanical, electrical, computer and material science. Many of these topics would normally be full courses in themselves. This course intends to teach familiarity with a focus on hands-on practice as applied to products. Students will briefly use equipment such as MTS materials testing machines, mills, lathes, oscilloscopes, laser cutters, photodiodes, motors, servos, microcomputers as well as engineering software such as Solidworks, C compilers, Labview, Matlab, and Cambridge Engineering Selector. The course develops basic design skills through a combination of lectures, hands-on exercises, and a semester design project. General course topics include: fundamental design principles, project definition and needfinding, advanced computer-aided design, rapid prototyping techniques, computer-controlled machining, and an in-depth exploration of the modern analysis and simulation tools that have revolutionized the way in which products are designed. Enrollment is limited.
Course not offered every year
Prerequisites: MEAM 101, MEAM 150, and MEAM 210, or graduate standing in the School of Engineering, Design, or Wharton with similar experience
Activity: Lecture
1.0 Course Unit

IPD 501 Integrated Computer-Aided Design, Manufacturing and Analysis
The majority of today’s engineered products move through an advanced computer-aided workflow which greatly speeds design and process time. This course will explore the fundamental components of this workflow through a combination of lectures, hands-on exercises, and a semester design project. General course topics include: fundamental design principles, project definition and needfinding, advanced computer-aided design, rapid prototyping techniques, computer-controlled machining, and an in-depth exploration of the modern analysis and simulation tools that have revolutionized the way in which products are designed. Enrollment is limited.
Course not offered every year
Prerequisites: MEAM 101, MEAM 150, and MEAM 210, or graduate standing in the School of Engineering, Design, or Wharton with similar experience
Activity: Lecture
1.0 Course Unit

IPD 503 Design Fundamentals
The creation of a successful product requires the integration of design, engineering, and marketing. The purpose of this intensive studio course is to introduce basic concepts in the design of three-dimensional products. For purposes of the course, design is understood as a creative act of synthesis expressed through various modes of 2-dimensional and 3-dimensional representation. The course develops basic design skills ranging from hand sketching to the use of digital modeling software and rapid prototyping. Fulfills the requirement for a design background course in the interdisciplinary graduate program in Integrated Product Design (IPD).
Taught by: Richard Wesley
Course usually offered summer term only
Also Offered As: ARCH 303
Activity: Studio
1.0 Course Unit

IPD 504 Rehab Engineering and Design
Students will learn about problems faced by disabled persons and medical rehabilitation specialists, and how engineering design can be used to solve and ameliorate those problems. The course combines lectures, multiple design projects and exercises, and field trips to clinical rehabilitation facilities. Students will have substantial interaction with clinical faculty, as well as with patients.
One-term course offered either term
Also Offered As: BE 514
Prerequisite: Graduate students or permission of the instructor
Activity: Lecture
1.0 Course Unit

IPD 509 Needfinding
Needfinding is an approach that puts people and their needs at the center of product development and business strategy creation. Over 90% of new products introduced into the marketplace fail. A good portion of these failures are due to lack of understanding of end consumers and their needs. To develop truly successful new products, it’s not enough just to ask people what they need or want. Designers and engineers need tools and techniques to get beyond what people can explicitly state and determine their implicit needs. Needfinding is an approach for developing deep insights that provide strategic direction for corporations and open up new possibilities for product development. In this class students will gain a toolset from which to develop their own approaches to conducting research for design: learning how to think about other people, about culture, and about new perspectives. They will also learn tactical skills: how to define research questions, how to conduct observations and interviews, how to interpret results, how to synthesize them into fodder for design, and how to communicate their findings in a way that is compelling and actionable for designers, marketers, and business strategists. This class is designed for graduate students and upper level undergrads with a specific interest in product design or design thinking.
One-term course offered either term
Activity: Lecture
1.0 Course Unit

IPD 511 Creative Thinking and Design
This is a creative & iterative problem solving course that uses a series of mechanical design challenge projects to move students into the broad realm of unpredictable often incalculable time-constrained problem solving. It explores a wide variety of problem definition, exploration and solving "tools," and a variety of surrounding "design thinking" topics, such as ethics and the design of experience. Drawing and prototyping are used in the projects for ideation, iteration, speculation and communication.
Course usually offered in fall term
Activity: Lecture
1.0 Course Unit
Notes: It is recommended that undergraduates take MEAM 101 prior to this course.
IPD 514 Design for Manufacturability
This course is aimed at providing current and future product design/development engineers, manufacturing engineers, and product development managers with an applied understanding of Design for Manufacturability (DFM) concepts and methods. The course content includes materials from multiple disciplines including: engineering design, manufacturing, marketing, finance, project management, and quality systems.
Course usually offered in spring term
Also Offered As: MEAM 415, OIDD 415
Prerequisites: MEAM 101 or equivalent, MEAM 210 or equivalent, Senior or Graduate standing in the School of Design, Engineering, or Business with completed product development and/or design engineering core coursework or related experience
Activity: Lecture
1.0 Course Unit

IPD 515 Product Design
This course provides tools and methods for creating new products. The course is intended for students with a strong career interest in new product development, entrepreneurship, and/or technology development. The course follows an overall product design methodology, including the identification of customer needs, generation of product concepts, prototyping, and design-for-manufacturing. Weekly student assignments are focused on the design of a new product and culminate in the creation of a prototype, which is launched at an end-of-semester public Design Fair. The course project is a physical good - but most of the tools and methods apply to services and software products.
One-term course offered either term
Also Offered As: MEAM 415, OIDD 415
Activity: Lecture
1.0 Course Unit

IPD 516 Advanced Mechatronic Reactive Systems
This course combines performance art and advanced mechatronics concepts that include the design and implementation of large-scale actuation, advanced sensing, actuation and control. This course pairs design school and engineering students to form interdisciplinary teams that together design and build electro-mechanical reactive spaces and scenic/architectural elements in the context of the performing arts. The two disciplinary groups will be treated separately and receive credit for different courses (ARCH746 will be taught concurrently and in some cases co-located) as they will be learning different things. Engineering students gain design sensibilities and advanced mechatronics in the form of networked embedded processing and protocols for large scale actuation and sensing. Design students learn elementary mechatronics and design reactive architectures and work with engineering students to build them. The class will culminate in some artistic performance (typically with professional artists) such as a Shakespeare play, robotic ballet, a mechatronic opera.
Course not offered every year
Also Offered As: MEAM 516
Prerequisite: MEAM 510 (Mechatronics) or equivalent
Activity: Lecture
1.0 Course Unit

IPD 519 Real-Time Embedded Systems
The use of distributed wireless sensor networks has surged in popularity in recent years with applications ranging from environmental monitoring, to people- and object-tracking in both cooperative and hostile environments. This course is targeted at understanding and obtaining hands-on experience with the state-of-the-art in such wireless sensor networks which are often composed using relatively inexpensive sensor nodes that have low power consumption, low processing power and bandwidth. The course will span a variety of topics ranging from radio communications, network stack, systems infrastructure including QoS support and energy management, programming paradigms, distributed algorithms and example applications. Some guest lectures may be given.
One-term course offered either term
Also Offered As: ESE 519
Prerequisites: CIS 120, ESE 350 or equivalent, one course in computer networks and Senior or Graduate standing
Activity: Lecture
1.0 Course Unit

IPD 521 Designing Smart Objects for Play and Learning
Today's children enjoy a wide array of play experiences, with stories, learning, characters and games that exist as physical stand-alone objects or toys enhanced with electronics or software. In this course, students will explore the domain of play and learning in order to develop original proposals for new product experiences that are at once tangible, immersive and dynamic. They will conduct research into education and psychology while also gaining hands-on exposure to new product manifestations in a variety of forms, both physical and digital. Students will be challenged to work in teams to explore concepts, share research and build prototypes of their experiences in the form of static objects that may have accompanying electronic devices or software. Final design proposals will consider future distribution models for product experiences such as 3D printing, virtual reality and software-hardware integration. Instruction will be part seminar and part workshop, providing research guidance and encouraging connections will subject matter experts throughout the Penn campus.
Course usually offered in fall term
Also Offered As: ARCH 721
Activity: Seminar
1.0 Course Unit

IPD 525 Ergonomics/Human Factors Based Product Design
Human Factors and Ergonomics knowledge is a critical component of a product designer or design engineer’s toolbox. This course teaches the direct application of existing human factors/ergonomic data to the creation of new product designs. Applying human factors knowledge to problem solving for product design happens throughout the design process. It is a useful input as initial ideas begin to ut and as a way to verify completed concepts through directly documented user testing and design iteration. The course would be a mini-lecture/studio style course in which the students will work in class on assigned projects, finding, analyzing, extrapolating and applying data to design solutions and creating mockups, modeland prototypes for user testing of their designs.
Course usually offered in fall term
Activity: Lecture
1.0 Course Unit
IPD 527 Industrial Design I.
This course provides an introduction to the ideas and techniques of Industrial Design, which operates between Engineering and Marketing as the design component of Integrated Product Development. The course is intended for students from engineering, design, or business with an interest in multi-disciplinary, needs-based product design methods. It will follow a workshop model, combining weekly lectures on design manufacturing, with a progressive set of design exercises. Course usually offered in spring term
Also Offered As: ARCH 727
Activity: Lecture
1.0 Course Unit

IPD 528 Design of Contemporary Products
This course was designed to explore intersections of functionality and performance using an experimental platform to uncover opportunities within the built environment to create domestic products. Provides practical insights into the material manipulation and aesthetic experimentation that are essential for the design and fabrication of products. Lectures and case studies help students to learn from examples and develop their own designs. Through a series of exercises, students design and fabricate a prototype using actual materials. The course addresses problems unique to product design, such as scale, weight, cost and production. Course usually offered in spring term
Also Offered As: ARCH 728
Activity: Seminar
1.0 Course Unit

IPD 529 Designing Connected Objects and Experiences
The objective of this course is to introduce students to a more conceptual, creative, and meaningful approach to creating interactive functional objects utilizing analog, digital, and electronic skillsets acquired through the core engineering curriculum. This course will cover basics of design as an art form, wearables design, electronic sensors, and creating connected devices. Students will be challenged to create 3 pieces of work both individually and in teams culminating in a gallery show of the students’ work. Visit the course website at www.ipd529.com to view previous student work. Course usually offered in fall term
Activity: Lecture
1.0 Course Unit

IPD 530 Building Product Workshop: Transwall
As Craig Vogel notes in The Design of Things to Come, “we are in a new economic age that is in need of a new renaissance in product development, on that leverages multiple minds working in concert.” With this mindset, this interdisciplinary workshop guides students through the product design process from design brief to concept generation in one semester, working firsthand with Transwall, a leading manufacturer of demountable wall systems, to focus on a specific product need. The design opportunity looks for the next generation of pre-manufactured wall systems; getting away from field constructed walls and looking at critical issues of mass-produced wall systems; flexibility, mobility, structural stability, acoustics, transparency/opacity, and operability. During the workshop, students will explore the context that creates the unique need for a new product and have an opportunity to conceptualize their design ideas through sketches, scale model studies and partial prototypes. One-term course offered either term
Also Offered As: ARCH 733
Activity: Lecture
1.0 Course Unit

IPD 544 Digital Fabrication
A seminar and design workshop that explores associative and parametric CAD-CAM strategies, to enable an interactive continuity between conception and fabrication. Through parametric 3D constructions, students will explore how to link dishk different aspects of the architectural projects, such as: (1) design intention; (2) control of variation and adaptation; (3) construction constraints; (4) digital fabrication processes. The course emphasizes the cross-fertilization of formal, technical and performative aspects of the design activity. Course usually offered in spring term
Also Offered As: ARCH 744
Activity: Seminar
1.0 Course Unit

IPD 545 Engineering Entrepreneurship I
Engineers and scientists create and lead great companies, hiring managers when and where needed to help execute their vision. Designed expressly for students having a keen interest in technological innovation, this course investigates the roles of inventors and founders in successful technology ventures. Through case studies and guest speakers, we introduce the knowledge and skills needed to recognize and seize a high-tech entrepreneurial opportunity - be it a product or service - and then successfully launch a startup or spin-off company. The course studies key areas of intellectual property, its protection and strategic value; opportunity analysis and concept testing; shaping technology driven inventions into customer-driven products; constructing defensible competitive strategies; acquiring resources in the form of capital, people and strategic partners; and the founder’s leadership role in an emerging high-tech company. Throughout the course emphasis is placed on decisions faced by founders, and on the sequential risks and determinants of success in the early growth phase of a technology venture. The course is designed for, but not restricted to, students of engineering and applied science and assumes no prior business education. One-term course offered either term
Also Offered As: EAS 545
Prerequisite: Third or Fourth year or Graduate standing
Activity: Lecture
1.0 Course Unit

IPD 551 Design Processes
This studio is structured for IPD students as an intensive, interdisciplinary exploration of Design as purposeful for Integrated Product Design. The goal of the studio is to give students a firsthand experience of various processes involved in creating successful integrated product designs. This first semester of the four-semester studio sequence focuses on giving students experience developing designs based on a range of starting points: form, function, materiality and manufacturing process. Students will practice design through rigorous, consistent processes for thinking through the evolution of their ideas. In this course, they will go through an entire design process from conceptualization to design to producing prototypes. They will be taught to focus on the specifics of their designs, causing them to be conscious of what drives their choices as designers and providing them with a wider range of tools to design from in successive projects. Course work will involve readings, assignments, class participation, in-class exercises, a mid-term presentation and a final submission.
One-term course offered either term
Activity: Lecture
1.0 Course Unit
IPD 552 Problem Framing
In the second semester of the four-semester studio sequence, we ask students to take a step back from what and how they are designing and ask the question of why they are designing it. We will teach them a rigorous process for understanding stakeholder needs and for translating those needs into implications for product design. They will begin to develop greater awareness of the personal, social, competitive and technological contexts that their products fit into, and to learn how to design for those contexts. They will develop the ability to dive into a topic and frame a design problem, and to understand the implications of how they frame the problem on what they design. Ideally, they will use this process to identify a problem or opportunity to work on for their final project. Course work will involve readings, assignments, class participation, in-class exercises, and a final submission.
Course usually offered in spring term
Activity: Lecture
1.0 Course Unit

IPD 568 Integrative Design Studio: Biological Design
This course is a research-based design studio that introduces new materials, fabrication, and prototyping techniques to develop a series of design proposals in response to the theme: Biological Design. The studio introduces life sciences and biotechnologies to designers, artists, and non-specialists to develop creative and critical propositions that address the social, cultural, and environmental needs of the 21st century. The course will be a pilot study of the first biodesign challenge organized by CUT/PASTE/GROW. The final projects will be submitted to a competition and the winning entry will be featured at Biofabricate in Summer 2017.
One-term course offered either term
Also Offered As: FNAR 268, FNAR 568
Activity: Studio
1.0 Course Unit

IPD 572 Design Thinking and Making
Creating new product concepts was once a specialized pursuit exclusively performed by design professionals in isolation from the rest of an organization. Today’s products are developed in a holistic process involving a collaboration amount many disciplines. Design thinking - incorporating processes, approaches, and working methods from traditional designers’ toolkits - has become a way of generating innovative ideas to challenging problems and refining those ideas. Rapid prototyping techniques, affordable and accessible prototyping platforms, and an iterative mindset have enabled people to more reliably translate those ideas into implementable solutions. In this course, students will be exposed to these techniques and learn how to engage in a human-centered design process.
One-term course offered either term
Also Offered As: ARCH 725
Activity: Seminar
1.0 Course Unit

IPD 599 Master’s Independent Study
One-term course offered either term
Activity: Independent Study
1.0 Course Unit

IPD 699 IPD Seminar
One-term course offered either term
Activity: Seminar
1.0 Course Unit