LGIC 010 Ideas in Logic and Computation
This course provides an introduction to some of the fundamental ideas of logic and computation. Topics will include truth functional logic, quantificational logic, and logical decision problems.
Taught by: Weinstein
Course usually offered in spring term
Activity: Lecture
1 Course Unit
Notes: This is a Formal Reasoning course.

LGIC 210 Applied Mathematics of Information and Computation I
The first semester of a two-semester course designed to introduce students to a range of mathematical subjects useful in the analysis of information and computation. This course will treat topics chosen from set theory, combinatorics, graph theory, and number theory.
Taught by: Scedrov, Towsner
Course usually offered in fall term
Prerequisite: MATH 114 or MATH 115 or permission of the instructor
Activity: Lecture
1 Course Unit

LGIC 220 Applied Mathematics of Information and Computation II
The second semester of a two-semester course devoted to mathematical subjects useful in the analysis of information and computation. Topics will be drawn from automata theory, formal languages, computability and complexity, and information theory.
Taught by: Scedrov, Towsner
Course not offered every year
Prerequisite: LGIC 210 or permission of the instructor
Activity: Lecture
1 Course Unit

LGIC 310 Logic I
Taught by: Scedrov, Towsner, Weinstein
One-term course offered either term
Prerequisite: MATH 371 or MATH 503
Activity: Lecture
1 Course Unit

LGIC 320 Logic II
The second semester of a two-semester course on the fundamental results and techniques of mathematical logic. Topics will be drawn from model theory, proof theory, recursion theory, and set theory. Connections between logic and algebra, analysis, combinatorics, computer science, and the foundations of mathematics will be emphasized.
Taught by: Scedrov, Towsner, Weinstein
One-term course offered either term
Prerequisite: LGIC 310 or permission of the instructor
Activity: Seminar
1 Course Unit

LGIC 499 Topics in Logic
This course will focus on the fundamental results and techniques of mathematical logic. Topics will be drawn from model theory, proof theory, recursion theory, and set theory. Connections between logic and algebra, analysis, combinatorics, computer science, and the foundations of mathematics will be emphasized.
Taught by: Weinstein
Course not offered every year
Activity: Seminar
1 Course Unit