MECHANICAL ENGINEERING AND APPLIED MECHANICS (MEAM)

MEAM 099 Independent Study
An opportunity for the student to become closely associated with a professor in (1) a research effort to develop research skills and technique and/or (2) to develop a program of independent in-depth study in a subject area in which the professor and student have a common interest. The challenge of the task undertaken must be consistent with the student's academic level. To register for this course, the student and professor jointly submit a detailed proposal. Subject to the approval of the MEAM Undergraduate Curriculum Chair.
One-term course offered either term
Activity: Independent Study
1.0 Course Unit
Notes: Open to all students. A maximum of 2 c.u. of MEAM 099 may be applied toward the B.A.S. or B.S.E. degree requirements

MEAM 101 Introduction to Mechanical Design
This hands-on, project-based course covers the fundamentals of the modern mechanical design process, from needfinding and brainstorming to the basics of computerized manufacturing and rapid prototyping. Topics include: product definition (needfinding, observation, sketching, and brainstorming); computer-aided design (part creation, assemblies, and animation using SolidWorks); fundamental engineering design practices (material selection, dimensioning, tolerances, etc.); basic computer simulation and analysis; and rapid prototyping (laser cutter, 3-D fused-deposition modeling, and an introduction to computer-controlled machining).
One-term course offered either term
Activity: Lecture
1.0 Course Unit
Notes: This course is available to all Engineering majors. Seniors are not permitted to register for this class.

MEAM 110 Introduction to Mechanics
This lecture course and a companion laboratory course (MEAM 147) build upon the concepts of Newtonian (classical) mechanics and their application to engineered systems. This course introduces students to mechanical principles that are the foundation of upper-level engineering courses including MEAM 210 and 211. The three major parts of this course are: I. Vector Mechanics; II. Statics and Structures; and III. Kinematics and Dynamics. Topics include: vector analysis, statics of rigid bodies, introduction to deformable bodies, friction, kinematics of motion, work and energy, and dynamics of particles. Case studies will be introduced, and the role of Newtonian mechanics in emerging applications including bio- and nano-technologies will be discussed.
Course usually offered in fall term
Corequisite: MATH 104 AND MEAM 147
Activity: Lecture
1.0 Course Unit

MEAM 147 Introduction to Mechanics Lab
This half-credit laboratory class is a companion to the Introduction to Mechanics lecture course (MEAM 110). It investigates the concepts of Newtonian (classical) mechanics through weekly hands-on experiments, emphasizing connections between theoretical principles and practical applications in engineering. In addition to furthering their understanding about the workings of the physical world, students will improve their skills at conducting experiments, obtaining reliable data, presenting numerical results, and extracting meaningful information from such numbers.
Course usually offered in fall term
Corequisite: MEAM 110
Activity: Laboratory
0.5 Course Units

MEAM 201 Machine Design and Manufacturing
Building upon the fundamentals of mechanical design taught in MEAM 101, this hands-on, project-based course provides students with the knowledge and skills necessary to design, analyze, and test fully-functional mechanical systems. Topics covered include an introduction to machine elements, analysis of the mechanics of machining, manufacturing technology, precision fabrication (milling, turning, and computer-controlled machining), metrology, tolerances, cutting-tool fundamentals and engineering materials. Enrollment is limited.
Taught by: Graham Wabiszewski
One-term course offered either term
Prerequisite: MEAM 101
Activity: Lecture
1.0 Course Unit

MEAM 202 Introduction to Thermal and Fluids Engineering
This course introduces students to the main concepts and applications of thermodynamics, fluid mechanics, and heat transfer. Topics covered include the first law of thermodynamics, fluid statics, Bernoulli’s equation, drag, lift, streamlines, conduction, convection, radiation, thermal resistances, and lumped capacitance. Mass, momentum, and energy equations are developed using the Reynolds Transport Theorem.
Taught by: Paulo Campos Arratia
Prerequisite: MATH 104 AND (MEAM 110 OR PHYS 150)
Corequisite: MATH 114
Activity: Lecture
1.0 Course Unit

MEAM 203 Thermodynamics I
Thermodynamics studies the fundamental concepts related to energy conversion in such mechanical systems as internal and external combustion engines (including automobile and aircraft engines), compressors, pumps, refrigerators, and turbines. This course is intended for students in mechanical engineering, chemical engineering, materials science, physics and other fields. The topics include properties of pure substances, first-law analysis of closed systems and control volumes, reversibility and irreversibility, entropy, second-law analysis, exergy, power and refrigeration cycles, and their engineering applications.
Course usually offered in spring term
Prerequisites: MATH 104, 114
Activity: Lecture
1.0 Course Unit
MEAM 210 Statics and Strength of Materials
This course is primarily intended for students in mechanical engineering, but may also be of interest to students in materials science and other fields. It continues the treatment of statics of rigid bodies begun in MEAM 110/PHYS 150 and progresses to the treatment of deformable bodies and their response to loads. The concepts of stress, strain, and linearly elastic response are introduced and applied to the behavior of rods, shafts, beams and other mechanical components. The failure and design of mechanical components are discussed.
Course usually offered in fall term
Prerequisite: MEAM 110, 114 or PHYS 150
Corequisite: MATH 240 AND MEAM 247
Activity: Lecture
1.0 Course Unit

MEAM 211 Engineering Mechanics: Dynamics
This course introduces the basic concepts in kinematics and dynamics that are necessary to understand, analyze and design mechanisms and machines. These concepts are also fundamental to the modeling and analysis of human movement, biomechanics, animation of synthetic human models and robotics. The topics include: Particle dynamics using energy and momentum methods of analysis, Dynamics of systems of particles; Impact; Systems of variable mass; Kinematics and dynamics of rigid bodies in plane motion; Computer-aided dynamic simulation and animation.
Taught by: Michael Posa
Course usually offered in spring term
Prerequisite: MEAM 210 AND MATH 240 AND ENGR 105
Corequisite: MATH 241 OR ENM 251
Activity: Lecture
1.0 Course Unit

MEAM 220 Introduction to Materials Science and Engineering
The course is an introduction to the most important concepts in materials science and engineering. You will learn how the control of chemical bonding, synthesis, processing, structure and defects can be used to tailor the properties and performance of materials for applications that range from sustainable sources of energy, to construction, to consumer electronics. Case studies are also included to highlight environmental issues associated with materials degradation. This course includes lab demonstrations of key materials properties and a final project where students research an area of materials technology of their own interest.
Taught by: Dr. Peter Davies
Course usually offered in fall term
Also Offered As: MTE 220
Prerequisite: CHEM 101 OR PHYS 140 OR MEAM 110
Activity: Lecture
1.0 Course Unit

MEAM 247 Mechanical Engineering Laboratory I
This is the first of a two semester sophomore level laboratory sequence that students complete over the fall and spring semesters. The course teaches the principles of experimentation and measurement as well as analysis and application to design. This fall semester course follows closely with MEAM 210, involving experiments to explore the principles of statics and strength of materials. Prerequisite: Sophomore standing in engineering
Course usually offered in fall term
Corequisite: MEAM 210
Activity: Laboratory
0.5 Course Unit

MEAM 248 Mechanical Engineering Lab I
This is the second of a two-semester sophomore level laboratory sequence that students complete over the fall and spring semesters. The course teaches the principles of experimentation and measurement as well as analysis and application to design. The spring semester course follows closely with MEAM 203 and MEAM 211, expanding upon the principles of experimentation, measurement, analysis, and design of systems through hands-on laboratories and projects in thermodynamics and dynamics. Prerequisite: Sophomore standing in engineering
Course usually offered in spring term
Corequisite: MEAM 203 AND MEAM 211
Activity: Lecture
0.5 Course Units

MEAM 302 Fluid Mechanics
Physical properties; fluid-statics; Bernoulli equation; fluid kinematics; conservation laws and finite control-volume analysis; conservation laws and differential analysis; inviscid flow; The Navier-Stokes equation and some exact solutions; similitude, dimensional analysis, and modeling; flow in pipes and channels; boundary layer theory; lift and drag.
Course usually offered in fall term
Prerequisite: MATH 241 or ENM 251 and PHYS 150 or MEAM 110, 147
Activity: Lecture
1.0 Course Unit

MEAM 320 Introduction to Mechanical and Mechatronic Systems
This course introduces topics in the design and analysis of modern mechanical systems. The course will cover concepts in mechanism design, kinematics, electronic circuits, motors and electromechanical systems, and measurement and filtering. Specific topics include kinematics of linkages, operational amplifiers, and interfacing with mechanical systems by programming microcontrollers.
Prerequisite: MEAM 211
Corequisite: MEAM 347
Activity: Lecture
1.0 Course Unit

MEAM 321 Dynamic Systems and Control
This course teaches the fundamental concepts underlying the dynamics of vibrations for single-degree of freedom, multi-degree and infinite-degree of freedom mechanical systems. The course will focus on Newton's Force Methods, Virtual-Work Methods, and Lagrange's Variation Methods for analyzing problems in vibrations. Students will learn how to analyze transient, steady state and forced motion of single and multi-degree of freedom linear and non-linear systems. The course teaches analytical solution techniques for linear systems and practical numerical and simulation methods for analysis and design of nonlinear systems.
Course usually offered in spring term
Prerequisite: MATH 241, ENM 251 MEAM 211
Activity: Lecture
1.0 Course Unit
MEAM 333 Heat and Mass Transfer
This course covers fundamentals of heat and mass transfer and applications to practical problems in energy conversion and conservation. Emphasis will be on developing a physical and analytical understanding of conductive, convective, and radiative heat transfer, as well as design of heat exchangers and heat transfer with phase change. Topics covered will include: types of heat transfer processes, their relative importance, and the interactions between them, solutions of steady state and transient state conduction, emission and absorption of radiation by real surfaces and radiative transfer between surfaces, heat transfer by forced and natural convection owing to flow around bodies and through ducts, analytical solutions for some sample cases and applications of correlations for engineering problems. Students will develop an ability to apply governing principles and physical intuition to solve problems. Course usually offered in spring term
Prerequisite: MEAM 203, 302
Activity: Lecture
1.0 Course Unit

MEAM 347 Mechanical Engineering Design Laboratory
This is the first of a two-semester junior level laboratory sequence that students complete over the fall and spring semesters. The course is project-based, with problems whose solution requires experimental data and quantitative analysis, as well as creative mechanical design. The technical content is connected to MEAM 302 and MEAM 354, including aerodynamics, applied fluid systems and structural analysis. The course also includes electromechanical systems and application s of finite element analysis. Prerequisite: Junior standing in engineering
Course usually offered in fall term
Activity: Laboratory
1.0 Course Unit

MEAM 348 Mechanical Engineering Design Laboratory
This is the second of a two-semester junior level laboratory sequence that students complete over the fall and spring semesters. The course is project-based, with open-ended design problems that challenge students to develop original experiments and choose appropriate analyses, with an increasing emphasis on teamwork and project planning. The technical content is connected to MEAM 321 and MEAM 333, including multimodal transient heat transfer and dynamic systems modeling. Prerequisite: Junior standing in engineering
Course usually offered in spring term
Activity: Laboratory
1.0 Course Unit

MEAM 354 Mechanics of Solids
This course builds on the fundamentals of solid mechanics taught in MEAM 210 and addresses more advanced problems in strength of materials. The students will be exposed to a wide array of applications from traditional engineering disciplines as well as emerging areas such as biotechnology and nanotechnology. The methods of analysis developed in this course will form the cornerstone of machine design and also more advanced topics in the mechanics of materials. Prerequisite: If course requirements not met, permission of instructor required.
Course usually offered in fall term
Prerequisites: MEAM 210, BE 200
Activity: Lecture
1.0 Course Unit

MEAM 405 Mechanical Properties of Macro/Nanoscale Materials
The application of continuum and microstructural concepts to elasticity and plasticity and the mechanisms of plastic flow and fracture in metals, polymers and ceramics. Topics covered include elasticity, viscoelasticity, plasticity, crystal defects, strengthening, crystallographic effects, twinning, creep and fatigue. Emphasis will be on mathematical and physical understanding rather than problem solving.
Course usually offered in spring term
Also Offered As: MEAM 505, MSE 405, MSE 505
Prerequisite: MEE 220 OR MEAM 210 OR MATH 240
Activity: Lecture
1.0 Course Unit

MEAM 415 Product Design
This course provides tools and methods for creating new products. The course is intended for students with a strong career interest in new product development, entrepreneurship, and/or technology development. The course follows an overall product design methodology, including the identification of customer needs, generation of product concepts, prototyping, and design-for-manufacturing. Weekly student assignments are focused on the design of a new product and culminate in the creation of a prototype, which is launched at an end-of-semester public Design Fair. The course project is a physical good - but most of the tools and methods apply to services and software products. The course is open to any Penn sophomore, junior, senior or graduate student.
Taught by: Faculty
Also Offered As: IPD 515, OIDD 415, OIDD 515
Activity: Lecture
1.0 Course Unit

MEAM 421 Control For Autonomous Robots
This course introduces the hardware, software and control technology used in autonomous ground vehicles, commonly called 'self-driving cars.' The weekly laboratory sessions focus on development of a small-scale autonomous car, incrementally enhancing the sensors, software, and control algorithms to culminate in a demonstration in a realistic outdoor operating environment. Students will learn basic physics and modeling; controls design and analysis in Matlab and Simulink; software implementation in C and Python; sensor systems and filtering methods for IMUs, GPS, and computer vision systems; and path planning from fixed map data. Prerequisite: If course requirement not met, permission of instructor required.
Course usually offered in fall term
Also Offered As: ESE 421
Prerequisite: (CIS 110 OR CIS 120 OR ENGR 105) AND (ESE 210 OR ESE 215 OR MEAM 211)
Activity: Lecture
1.5 Course Unit

MEAM 445 Mechanical Engineering Design Projects
This capstone design project course is required of all mechanical engineering students. Student teams will design and test complex mechanical systems that address a societal or consumer need. Projects are devised by the team, sponsored by industry, or formulated by Penn professors. Each project is approved by the instructor and a faculty advisor. Topics treated in the course include project planning, prototyping, patent and library searches, intellectual property, ethics, and technical writing and presentations. The work is spread over MEAM 445 and MEAM 446.
Prerequisite: Junior standing
Course usually offered in fall term
Activity: Lecture
1.0 Course Unit
MEAM 446 Mechanical Engineering Design Projects
This is the second course in the two course sequence involving the capstone design project. See MEAM 445 for course description.
Course usually offered in spring term
Activity: Lecture
1.0 Course Unit

MEAM 502 Energy Engineering in Power Plants and Transportation Systems
Most energy consumed in the U.S. and in the world is produced using thermal-to-mechanical energy conversion. In this course, students will learn the engineering principles that govern how heat is converted to mechanical power in electric power plants, jet aircraft, and internal combustion engines. Topics covered include a review of thermodynamics and basic power cycles, supercritical, combined, and hybrid cycles, cogeneration, jet propulsion, and reciprocating internal combustion engines. A brief introduction to desalination and combustion is also included. The material in this course will provide students a foundation important for industrial and research employment in energy engineering.
Course usually offered in fall term
Prerequisites: MEAM 203, 333
Activity: Lecture
1.0 Course Unit

MEAM 503 Direct Energy Conversion: from Macro to Nano
The course focuses on devices that convert thermal, solar, or chemical energy directly to electricity, i.e., without intermediate mechanical machinery such as a turbine or a reciprocating piston engine. A variety of converters with sizes ranging from macro to nano scale will be discussed, with the advantages offered by nanoscale components specifically highlighted. Topics will include thermoelectric energy converters and radioisotope thermoelectric generators (RTGs), thermionic energy converters (TEC), photovoltaic (PV) and thermophotovoltaic (TPV) cells, as well as piezoelectric harvesters. Additional topics may include magnetohydrodynamic (MHD) generators, alkali metal thermal-to-electric converters (AMTEC), and fuel cells.
Course usually offered in fall term
Prerequisites: MEAM 203, 333
Activity: Lecture
1.0 Course Unit

MEAM 504 Tribology
The course will comprehensively cover both theoretical and practical tribology, the science and technology of interacting surfaces in relative motion. The various modes of lubrication, hydrodynamic, elastohydrodynamic, hydrostatic, mixed, solid and dry, will be studied in detail. The contact between solid surfaces will be covered, leading to an understanding of friction and various modes of wear. At each stage, it will be shown how the tribological principles learned can be applied in practice to improve the efficiency and durability of mechanical equipment and thereby enhance sustainability through energy and materials conservation. Prerequisite: Senior standing in Mechanical Engineering or Material Science of permission of the instructor
Course usually offered in fall term
Activity: Lecture
1.0 Course Unit

MEAM 505 Mechanical Properties of Macro/Nanoscale Materials
The application of continuum and microstructural concepts to elasticity and plasticity and the mechanisms of plastic flow and fracture in metals, polymers and ceramics. Topics covered include elasticity, viscoelasticity, plasticity, crystal defects, strengthening, crystallographic effects, twinning, creep and fatigue. Emphasis will be on mathematical and physical understanding rather than problem solving.
Course usually offered in spring term
Also Offered As: MEAM 405, MSE 405, MSE 505
Prerequisite: MSE 220 OR MEAM 210 OR MATH 240
Activity: Lecture
1.0 Course Unit

MEAM 506 Failure Analysis of Engineering Materials
This course will introduce students to the broad field of failure through hands-on real-life examples of specific failures. All engineering materials classes will be considered, including metals, polymers, elastomers, ceramics, and glasses. Emphasis will be placed on understanding how to actually analyze a failed component and understand the cause of failure. Several classes will be conducted by outside experts from places like the NTSB, FBI and OSHA.
Taught by: David Pope, Prof.
Course usually offered in fall term
Also Offered As: MSE 506
Prerequisite: MSE 220 AND (MSE 393 OR MEAM 354)
Activity: Lecture
1.0 Course Unit

MEAM 507 Fundamentals of Materials
This course will provide a graduate level introduction to the science and engineering of materials. It is designed specifically to meet the needs of students who will be doing research that involves materials but who do not have an extensive background in the field. The focus is on fundamental aspects of materials science and will emphasize phenomena and how to describe them. The course assumes an undergraduate background in any area of physical/chemical science and undergraduate mathematics appropriate to this. The course will also be accessible to students of applied mathematics.
Course usually offered in fall term
Also Offered As: MSE 507
Activity: Lecture
1.0 Course Unit

MEAM 508 Materials and Manufacturing for Mechanical Design
The selection of materials and manufacturing processes are critical in the design of mechanical systems. Material properties and manufacturing processes are often tightly linked, thus this course covers both topics in an integrated manner. The properties and manufacturing processes for a wide range of materials (i.e., metals, ceramics, polymers, composites) are examined from both a fundamental and practical perspective.
From a materials standpoint, the course focuses on mechanical properties, including modulus, strength, fatigue, wear, and creep. Established and emerging manufacturing processes will be discussed. Design-based case studies are used to illustrate the selection of materials and processes.
Course usually offered in spring term
Activity: Lecture
1.0 Course Unit
MEAM 510 Design of Mechatronic Systems
In many modern systems, mechanical elements are tightly coupled with electronic components and embedded computers. Mechatronics is the study of how these domains are interconnected, and this hands-on, project-based course provides an integrated introduction to the fundamental components within each of the three domains, including: mechanical elements (prototyping, materials, actuators and sensors, transmissions, and fundamental kinematics), electronics (basic circuits, filters, op amps, discrete logic, and interfacing with mechanical elements), and computing (interfacing with the analog world, microprocessor technology, basic control theory, and programming). Prerequisite: Graduate standing in engineering or permission of the instructor
Course usually offered in fall term
Activity: Lecture
1.0 Course Unit

MEAM 513 Feedback Control Design and Analysis
Basic methods for analysis and design of feedback control in systems. Applications to practical systems. Methods presented include time response analysis, frequency response analysis, root locus, Nyquist and Bode plots, and the state-space approach. 
Course usually offered in spring term
Also Offered As: ESE 505
Prerequisite: MEAM 321 OR ESE 210
Activity: Lecture
1.0 Course Unit

MEAM 514 Design for Manufacturability
This course is aimed at providing current and future product design/development engineers, manufacturing engineers, and product development managers with an applied understanding of Design for Manufacturability (DFM) concepts and methods. The course content includes materials from multiple disciplines including: engineering design, manufacturing, marketing, finance, project management, and quality systems. Prerequisite: Senior or graduate standing in the School of Design, Engineering, or Business with completed product in development and/or design engineering core coursework or related experience.
Course usually offered in spring term
Also Offered As: IPD 514
Prerequisites: MEAM 101, 210
Activity: Lecture
1.0 Course Unit

MEAM 516 Advanced Mechatronic Reactive Spaces.
This course combines performance art and advanced mechatronics concepts that include the design and implementation of large-scale actuation, advanced sensing, actuation and control. This course pairs design school and engineering students to form interdisciplinary teams that together design and build electro-mechanical reactive spaces and scenic/architectural elements in the context of the performing arts. The two disciplinary groups will be treated separately and receive credit for different courses (ARCH746 will be taught concurrently and in some cases co-located) as they will be learning different things. Engineering students gain design sensibilities and advanced mechatronics in the form of networked embedded processing and protocols for large scale actuation and sensing. Design students learn elementary mechatronics and design reactive architectures and work with engineering students to build them. The class will culminate in a some artistic performance (typically with professional artists) such as a Shakespeare play, robotic ballet, a mechatronic opera.
Course not offered every year
Also Offered As: IPD 516
Prerequisite: MEAM 510
Activity: Lecture
1.0 Course Unit

MEAM 517 Control and Optimization with Applications in Robotics
This course covers a variety of advanced topics in model-based nonlinear control, primarily focused on computational techniques and dynamic robotic applications. Students will learn both the theoretical basics of nonlinear and optimal control along with computational algorithms. Topics include dynamic programming, trajectory optimization, canonical underactuated systems, control of limit cycles, stability analysis, nonsmooth mechanics, and model predictive control. Applications include walking and running robots, manipulation, and flying machines.
As the course will cover state of the art techniques, we will review relevant research papers. At the end of the semester, students will prepare and present a final project on a related topic of their choosing. Prerequisite: If course requirement not met, permission of instructor required.
Course not offered every year
Prerequisites: MATH 312, MEAM 513 or ESE 500, 505, MEAM 211, 520
Activity: Lecture
1.0 Course Unit

MEAM 519 Elasticity and Micromechanics of Materials
This course is targeted to engineering students working in the areas on micro/nanomechanics of materials. The course will start with a quick review of the equations of linear elasticity and proceed to solutions of specific problems such as the Hertz contact problem, Eshelby’s problem etc. Failure mechanisms such as fracture and the fundamentals of dislocations/plasticity will also be discussed. Prerequisite: graduate standing or permission of the instructor.
Taught by: Reina Romo
Course usually offered in fall term
Also Offered As: MSE 550
Activity: Lecture
1.0 Course Unit
MEAM 520 Introduction to Robotics
The rapidly evolving field of robotics includes systems designed to replace, assist, or even entertain humans in a wide variety of tasks. Recent examples include human-friendly robot arms for manufacturing, interactive robotic pets, medical and surgical assistive robots, and semi-autonomous search-and-rescue vehicles. This course presents the fundamental kinematic, dynamic, and computational principles underlying most modern robotic systems. The main topics of the course include: rotation matrices, homogeneous transformations, manipulator forward kinematics, manipulator inverse kinematics, Jacobians, path and trajectory planning, sensing and actuation, and feedback control. The material is reinforced with hands-on lab exercises involving a robotic arm. Taught by: Cynthia Sung
Course usually offered in fall term
Prerequisite: MEAM 211 AND MATH 240 AND ENGR 105
Activity: Lecture
1.0 Course Unit

MEAM 523 Control Systems for Robotics
In this course, we present approaches for designing controllers for a varied class of robotic systems. We focus on mathematical concepts of linear and nonlinear control theory and how the theory translates to practical robotic applications with emphasis on manipulators, ground, and aerial robots. Topics include inverse kinematics based controllers, trajectory following controllers, non-holonomic robot controllers, artificial potential functions, and model predictive control. Coursework consists of problem sets, programming assignments, critical reading of research papers, and a final project. Prerequisite: If course requirement not met, permission of instructor required.
Course not offered every year
Prerequisites: MEAM 513, 520, ESE, 500
Activity: Lecture
1.0 Course Unit

MEAM 527 Finite Element Analysis
The objective of this course is to equip students with the background needed to carry out finite elements-based simulations of various engineering problems. The first part of the course will outline the theory of finite elements. The second part of the course will address the solution of classical equations of mathematical physics such as Laplace, Poisson, Helmholtz, the wave and the Heat equations. The third part of the course will consist of case studies taken from various areas of engineering and the sciences on topics that require or can benefit from finite element modeling. The students will gain hands-on experience with the multi-physics, finite element package FemLab.
Course usually offered in fall term
Prerequisite: MATH 241 OR ENM 251 AND PHYS 151
Activity: Lecture
1.0 Course Unit

MEAM 529 Introduction to Micro- and Nano-electromechanical Technologies
Taught by: Troy Olsson
Course usually offered in spring term
Also Offered As: ESE 529
Activity: Lecture
1.0 Course Unit

MEAM 530 Continuum Mechanics
This course serves as a basic introduction to the Mechanics of continuous media, and it will prepare the student for more advanced courses in solid and fluid mechanics. The topics to be covered include: Tensor algebra and calculus, Lagrangian and Eulerian kinematics, Cauchy and Piola-Kirchhoff stresses, General principles: conservation of mass, conservation of linear and angular momentum, energy and the first law of thermodynamics, entropy and the second law of thermodynamics; constitutive theory, ideal fluids, Newtonian and non-Newtonian fluids, finite elasticity, linear elasticity, materials with microstructure. Multivariable Calculus, Linear Algebra, Partial Differential Equations.
Course usually offered in spring term
Activity: Lecture
1.0 Course Unit

MEAM 535 Advanced Dynamics
MEAM 211 and some Linear Algebra. Senior or Master’s Standing in Engineering or permission of the instructor.
Course usually offered in fall term
Activity: Lecture
1.0 Course Unit
MEAM 536 Viscous Fluid Flow and Modern Applications
This is an intermediate course that builds on the basic principles of Fluid Mechanics. The course provides a more in depth and unified framework to understand fluid flow at different time and length scales, in particular viscous flows. Topics include review of basic concepts, conservation laws (momentum, mass, and heat), fluid kinematics, tensor analysis, Stokes’ approximations, non-Newtonian fluid mechanics, and turbulence. The course will explore important modern topics such as microfluidics, swimming of micro-organisms, wind turbines, rheology, biofluid mechanics, and boundary layers. This course is intended for juniors, seniors, and graduate students from the School of Engineering and/or Arts and Sciences that have a general interest in fluid dynamics and its modern applications. Students should have an understanding of basic concepts in fluid mechanics and a good grasp on differential equations.
Course usually offered in spring term
Activity: Lecture
1.0 Course Unit
Notes: This course is intended for juniors, seniors and graduate students from the Schools of Engineering and/or Arts and Sciences that have a general interest in fluid dynamics and its modern applications. Students should have an understanding of basic concepts in fluid mechanics and a good grasp on differential equations.

MEAM 537 Nanotribology
Engineering is progressing to ever smaller scales, enabling new technologies, materials, devices, and applications. This course will provide an introduction to nano-scale tribology and the critical role it plays in the developing areas of nanoscience and nanotechnology. We will discuss how contact, adhesion, friction, lubrication, and wear at interfaces originate, using an integrated approach that combines concepts of mechanics, materials science, chemistry, and physics. We will cover a range of concepts and applications, drawing connections to both established and new approaches. We will discuss the limits of continuum mechanics and present newly developed theories and experiments tailored to describe micro- and nano-scale phenomena. We will emphasize specific applications throughout the course. Reading of scientific literature, critical peer discussion, individual and team problem assignments, and a peer-reviewed literature research project will be assigned as part of the course. Prerequisite: Freshman physics or consent of instructor.
Course not offered every year
Also Offered As: MSE 537
Prerequisite: MEAM 354
Activity: Lecture
1.0 Course Unit

MEAM 538 Turbulence
This course is an introductory course on turbulent flows. The course provides physical and mathematical framework for quantitative and qualitative descriptions of fundamental processes involved in turbulent flows. Topics include the Navier-Stokes equations, the statistical description of turbulence, equations for mean and fluctuations, energy cascade, turbulence spectra, Kolmogorov hypotheses, behavior of shear flows, and isotropic turbulence. The course will also explore modern topics such as computational modeling of turbulence. Prerequisite: Instructor permission required for undergraduates
Course usually offered in spring term
Prerequisites: MEAM 570, 536
Activity: Lecture
1.0 Course Unit
Notes: Instructor Permission required for undergraduates

MEAM 543 Performance, Stability and Control of UAVs
This course covers the application of classical aircraft performance and design concepts to fixed-wing and rotary-wing Unmanned Aerial Vehicles (UAVs). A survey of the latest developments in UAV technology will be used to motivate the development of quantitative mission requirements, such as payload, range, endurance, field length, and detectability. The implications of these requirements on vehicle configuration and sizing will be revealed through application of the fundamentals of aerodynamics and propulsion systems. The course will also cover basic flight dynamics and control, including typical inner-loop feedback applications.
Course usually offered in fall term
Prerequisites: MEAM 210, 211, MATH 240
Activity: Lecture
1.0 Course Unit

MEAM 545 Aerodynamics
Review of fluid kinematics and conservation laws; vorticity theorems; two-dimensional potential flow; airfoil theory; finite wings; oblique shocks; supersonic wing theory; laminar and turbulent boundary layers.
Course usually offered in spring term
Prerequisite: MEAM 302
Activity: Lecture
1.0 Course Unit

MEAM 550 Design of Microelectromechanical Systems
A course that covers the design and fabrication of micro- and nano-electromechanical systems. Topics in the course include micro- and nano-fabrication techniques, mechanics of flexures, thin film mechanics, sensing and actuation approaches (e.g., electrostatic, piezoelectric, and piezoresistive), as well as materials and reliability issues. The fundamentals of these topics will be augmented with device-based case studies.
Course not offered every year
Prerequisite: MEAM 354
Activity: Lecture
1.0 Course Unit

MEAM 553 Atomic Modeling in Materials Science
This course covers two major aspects of atomic level computer modeling in materials. 1. Methods: Molecular statics, Molecular dynamics, Monte Carlo, Kinetic Monte Carlo as well as methods of analysis of the results such as radial distribution function, thermodynamics deduced from the molecular dynamics, fluctuations, correlations and autocorrelations. 2. Semi-empirical descriptions of atomic interactions: pair potentials, embedded atom method, covalent bonding, ionic bonding. Basics of the density functional theory. Mechanics, condensed matter physics, thermodynamics and statistical mechanics needed in interpretations are briefly explained. Prerequisite: Ability to write a basic code in a computer language such as fortran, C, C++
Course usually offered in spring term
Also Offered As: MSE 561
Activity: Lecture
1.0 Course Unit
MEAM 555 Nanoscale Systems Biology
Nanoscience and engineering approaches to systems in biology are of growing importance. They extend from novel methods, especially microscopies that invite innovation to mathematical and/or computational modeling which incorporates the physics and chemistry of small scale biology. Proteins and DNA, for example, are highly specialized polymers that interact, catalyze, stretch and bend, move, and/or store information. Membranes are also used extensively by cells to isolate, adhere, deform, and regulate reactions. In this course, students will become familiar with cell & molecular biology and nanobiotechnology through an emphasis on nano-methods, membranes, molecular machines, and ‘polymers’ - from the quantitative perspectives of thermodynamics, statistical physics, and mechanics. We specifically elaborate ideas of energetics, fluctuations and noise, force, kinetics, diffusion, etc. on the nano- thru micro- scale, drawing from very recent examples in the literature. Laboratory experiments will provide hands-on exposure to microscopies in a biological context (eg. fluorescence down to nano-scale, AFM), physical methods (eg. micromanipulation, tracking virus-scale particles or quantum dots), and numerical problems in applied biophysics, chemistry, and engineering. A key goal of the course is to familiarize students with the concepts and technology (plus their limitations) as being employed in current research problems in nanoscale systems biology, extending to nanobiotechnology. Prerequisite: Background in Biology, Physics, Chemistry or Engineering with coursework in Thermodynamics or permission of the instructor. Taught by: Discher Course usually offered in fall term Also Offered As: BE 555, CBE 555 Activity: Lecture 1.0 Course Unit

MEAM 564 The Principles and Practice of Microfabrication Technology
A laboratory-based course on fabricating microelectronic and micromechanical devices using photolithographic processing and related fabrication technologies. Lectures discuss: clean room procedures; microelectronic and microstructural materials; photolithography; diffusion, oxidation; materials deposition; etching and plasma processes. Basic laboratory processes are covered for the first two thirds of the course with students completing structures appropriate to their major in the final third. Students registering for ESE 574 will be expected to do extra work (including term paper and additional project). Course not offered every year Also Offered As: ESE 460, ESE 574 Prerequisites: ESE 218, MSE 321, MEAM 333, CBE 351, PHYS 250 Activity: Lecture 1.0 Course Unit

MEAM 565 Nanoscale Systems Biology
Nanoscience and engineering approaches to systems in biology are of growing importance. They extend from novel methods, especially microscopies that invite innovation to mathematical and/or computational modeling which incorporates the physics and chemistry of small scale biology. Proteins and DNA, for example, are highly specialized polymers that interact, catalyze, stretch and bend, move, and/or store information. Membranes are also used extensively by cells to isolate, adhere, deform, and regulate reactions. In this course, students will become familiar with cell & molecular biology and nanobiotechnology through an emphasis on nano-methods, membranes, molecular machines, and ‘polymers’ - from the quantitative perspectives of thermodynamics, statistical physics, and mechanics. We specifically elaborate ideas of energetics, fluctuations and noise, force, kinetics, diffusion, etc. on the nano- thru micro- scale, drawing from very recent examples in the literature. Laboratory experiments will provide hands-on exposure to microscopies in a biological context (eg. fluorescence down to nano-scale, AFM), physical methods (eg. micromanipulation, tracking virus-scale particles or quantum dots), and numerical problems in applied biophysics, chemistry, and engineering. A key goal of the course is to familiarize students with the concepts and technology (plus their limitations) as being employed in current research problems in nanoscale systems biology, extending to nanobiotechnology. Prerequisite: Background in Biology, Physics, Chemistry or Engineering with coursework in Thermodynamics or permission of the instructor. Taught by: Discher Course usually offered in fall term Also Offered As: BE 555, CBE 555 Activity: Lecture 1.0 Course Unit

MEAM 567 Transport Processes I
The course provides a unified introduction to momentum, energy (heat), and mass transport processes. The basic mechanisms and the constitutive laws for the various transport processes will be delineated, and the conservation equations will be derived and applied to internal and external flows featuring a few examples from mechanical, chemical, and biological systems. Reactive flows will also be considered. Prerequisite: graduate standing or permission of the instructor. Taught by: Campos Arratia Course usually offered in fall term Activity: Lecture 1.0 Course Unit

MEAM 570 Transport Processes I
The course provides a unified introduction to momentum, energy (heat), and mass transport processes. The basic mechanisms and the constitutive laws for the various transport processes will be delineated, and the conservation equations will be derived and applied to internal and external flows featuring a few examples from mechanical, chemical, and biological systems. Reactive flows will also be considered. Prerequisite: graduate standing or permission of the instructor. Taught by: Campos Arratia Course usually offered in fall term Activity: Lecture 1.0 Course Unit

MEAM 571 Advanced Topics in Transport Phenomena
The course deals with advanced topics in transport phenomena and is suitable for graduate students in mechanical, chemical and bioengineering who plan to pursue research in areas related to transport phenomena or work in an industrial setting that deals with transport issues. Topics include: Transport processes with drops, Bubbles and particles; Phase change Phenomena: -condensation, evaporation, and combustion; Radiation heat transfer: non-participating media, participating media, equation of radiative transfer, optically thin and thick limits; Introduction to Hydrodynamic and Thermal Instability; Microscale energy transport; Nano-particle motion in fluids and transport. Prerequisite: If course requirements not met, permission of instructor required. Course not offered every year Prerequisite: MEAM 570 OR MEAM 642 OR CBE 640 Activity: Lecture 1.0 Course Unit

MEAM 574 The Principles and Practice of Microfabrication Technology
A laboratory-based course on fabricating microelectronic and micromechanical devices using photolithographic processing and related fabrication technologies. Lectures discuss: clean room procedures; microelectronic and microstructural materials; photolithography; diffusion, oxidation; materials deposition; etching and plasma processes. Basic laboratory processes are covered for the first two thirds of the course with students completing structures appropriate to their major in the final third. Students registering for ESE 574 will be expected to do extra work (including term paper and additional project). Course not offered every year Also Offered As: ESE 460, ESE 574 Prerequisites: ESE 218, MSE 321, MEAM 333, CBE 351, PHYS 250 Activity: Lecture 1.0 Course Unit

MEAM 575 Micro and Nano Fluidics
The course focuses on topics relevant for micro-fluidics, lab on chip technology, point of care diagnostics, nano-technology, biosensing, and interfacial phenomena. Although we will discuss briefly the fabrication of micro and nano fluidic devices, the course will mostly focus on physical phenomena from the continuum point of view. The mathematical complexity will be kept to a minimum. The course will be reasonably self-contained, and any necessary background material will be provided, consistent with the students’ background and level of preparation. Specifically, we will examine fluid and nanoparticle transport under the action of pressure, electric, magnetic, and capillary forces; the structure and role of superhydrophobic surfaces; how the solid/liquid interface acquires electric charge; ion transport in electrolytes (Poisson-Nernst-Planck equations); colloid stability; electroosmosis, electrophoresis, and particle polarization; electrowetting and digital microfluidics; particle and cell sorting; immunoassays; and enzymatic amplification of nucleic acids. Course not offered every year Activity: Lecture 1.0 Course Unit
MEAM 580 Electrochemistry for Energy, Nanofabrication and Sensing
Principles and mathematical models of electrochemical processes in energy conversion and storage, water desalination, nanofabrication, electroplating, and sensing for engineering and science graduate students and advanced undergraduates, lacking prior background in electrochemistry. The course covers equivalent circuits, electrode kinetics, electrokinetic and transport phenomena, and electrostatics. The course will introduce and use the finite element program COMSOLTM. We will discuss, among other things, applications to stationary and flow batteries, supercapacitors, integrated circuit fabrication, electrokinetics, and biosensing. In contrast to CBE 545 Electrochemical Energy Conversion that focuses on solid state electrochemistry, this course emphasizes liquid-based electrochemistry. 
Course usually offered in spring term
Prerequisites: MEAM 302, 333
Activity: Lecture
1.0 Course Unit

MEAM 597 Master's Thesis Research
One-term course offered either term
Activity: Masters Thesis
1.0 Course Unit

MEAM 599 Master's Independent Study
One-term course offered either term
Activity: Independent Study
1.0 Course Unit

MEAM 613 Non-Linear Control Theory
The course studies issues in nonlinear control theory, with a particular emphasis on the use of geometric principles. Topics include: controllability, accessibility, and observability, for nonlinear systems; Forbenius' theorem; feedback and input/output linearization for SISO and MIMO systems; dynamic extension; zero dynamics; output tracking and regulation; model matching disturbance decoupling; examples will be taken from mechanical systems, robotic systems, including those involving nonholonomic constraints, and active control of vibrations. 
Course not offered every year
Also Offered As: ESE 617
Prerequisite: ESE 500
Activity: Lecture
1.0 Course Unit

MEAM 620 Advanced Robotics
This course covers advanced topics in robotics and includes such topics as multi-body dynamics, nonlinear control theory and planning algorithms with application to robots and systems of multiple robots. Prerequisite: Graduate standing in engineering
Course usually offered in spring term
Prerequisite: MEAM 520 OR MEAM 535 OR ESE 500 OR CIS 580
Activity: Lecture
1.0 Course Unit

MEAM 630 Advanced Continuum Mechanics
This course is a more advanced version of MEAM 530. The topics to be covered include: tensor algebra and calculus, Lagrangian and Eulerian kinematics; Cauchy and Piola-Kirchhoff stresses. General principles: conservation of mass, conservation of linear and angular momentum, energy and the first law of hermodynamics, entropy and the second law of thermodynamics. Constitutive theory, ideal fluids, Newtonian and non-Newtonian fluids, finite elasticity, linear elasticity, materials with microstructure. One graduate level course in applied mathematics and one in either fluid or Solid Mechanics. 
Course not offered every year
Activity: Lecture
1.0 Course Unit

MEAM 632 Plasticity
This course develops the mathematical theory of plastic deformation for both crystalline and disordered materials. Phenomenological models for strain-hardening, creep and size-dependent plastic flow as well as physically-based theories for single crystals are discussed. Applications are drawn from problems in structural mechanics, deformation processing, friction and contact, and fracture. Large strain deformations and problems involving strain localization are considered. Prerequisite: If course requirement not met, permission of instructor required. 
Course not offered every year
Prerequisites: MEAM 519, ENM 510
Activity: Lecture
1.0 Course Unit

MEAM 633 Mechanics of Adhesion and Fracture
This course focuses on mechanics aspects of adhesion and fracture of solids. The topics are intimately related, as fracture involves decohesion. Topics include forces of interaction between surfaces of solids, perfect versus imperfect adhesion, aspects of contact mechanics, linear analysis of cracks in elastic materials, non-linear analysis of cracks in elastic-plastic materials, J-integral methods, phenomenological theories, crack growth and heeling, and stability. Micro-mechanical models of fracture are analyzed using non-linear elasticity and energy methods. Applications to various material systems and processes, including structural materials, layered materials, friction and wear. 
Course not offered every year
Prerequisite: MEAM 519 AND ENM 510
Activity: Lecture
1.0 Course Unit

MEAM 634 Rods and Shells
This course is intended for 2nd year graduate students and introduces continuum mechanics theory of rods and shells with applications to structures and to biological systems as well as stability and buckling. The course begins with topics from differential geometry of curves and surfaces and the associated tensor analysis on Riemannian spaces. A brief introduction to variational calculus is included since variational methods are a powerful tool for formulating approximate structural mechanics theories and for numerical analysis. The structural mechanics theories of rods, plates and shells are introduced including both linear and nonlinear theories. First-year graduate-level applied mathematics for engineers (ENM 510 and 511) and a first course in continuum mechanics or elasticity or permission of instructor. 
Course not offered every year
Activity: Lecture
1.0 Course Unit
MEAM 635 Composite Materials
This course deals with the prediction of the average, or effective properties of composite materials. The emphasis will be on methods for determining effective behavior. The course will be concerned mostly with linear mechanical and physical properties, with particular emphasis on the effective conductivity and elastic moduli of multi-phase composites and polycrystals. However, time-dependent and non-linear properties will also be discussed.
Course not offered every year
Prerequisite: ENM 510
Corequisite: ENM 511
Activity: Lecture
1.0 Course Unit

MEAM 642 Advanced Fluid Mechanics
Fluid mechanics as a vector field theory; basic conservation laws, constitutive relations, boundary conditions, Bernoulli theorems, vorticity theorems, potential flow. Viscous flow; large Reynolds number limit; boundary layers.
Course not offered every year
Activity: Lecture
1.0 Course Unit

MEAM 646 Computational Mechanics
The course is divided into two parts. The course first introduces general numerical techniques for elliptical partial differential equations - finite difference method, finite element method and spectral method. The second part of the course introduces finite volume method. SIMPLER formulation for the Navier-Stokes equations will be fully described in the class. Students will be given chances to modify a program specially written for this course to solve some practical problems in heat transfer and fluid flows.
Course not offered every year
Prerequisites: ENM 510, ENM 511, and one graduate level introductory course in mechanics. FORTRAN or C programming experience is necessary.
Activity: Lecture
1.0 Course Unit

MEAM 650 Mechanics of Soft and Biomaterials
This course is aimed to expose the students to a variety of topics in mechanic materials via discussion of 'classic' problems that have had the widest impact long period of time and have been applied to analyze the mechanical behavior a variety of biological and engineering materials.
Course not offered every year
Also Offered As: MSE 650
Activity: Lecture
1.0 Course Unit

MEAM 662 Advanced Molecular Thermodynamics
This course begins with a brief review of classical thermodynamics, including the development of Maxwell relationships and stability analysis. The remainder of the course develops the fundamental framework of statistical mechanics, then reviews various related topics including ideal and interacting gases, Einstein and Debye models of crystals, lattice models of liquids, and the basis of distribution function theory.
Course usually offered in fall term
Also Offered As: BE 662, CBE 618
Activity: Lecture
1.0 Course Unit

MEAM 663 Mechanics of Macromolecules
This course is targeted for engineering/physics students working in the areas of nano/bio technology. The course will start with a quick review of statistical mechanics and proceed to topics such as Langevin dynamics, solution biochemistry (Poisson-Boltzmann and Debye-Hückel theory), entropic elasticity of bio-polymers and networks, reaction rate kinetics, solid state physics and other areas of current technological relevance. Students will be expected to have knowledge of undergraduate mechanics, physics and thermodynamics.
Course not offered every year
Activity: Lecture
1.0 Course Unit

MEAM 690 Advanced Topics in Thermal Fluid Science or Energy
This course will be offered when demand permits. The topics will change due to the interest and specialties of the instructor(s). Some topics could include: Computational Fluid Mechanics, Visualization of Computational Results, Free Surface Flows, Fluid Mechanics of the Respiratory System, and transport in Reacting Systems.
Course not offered every year
Activity: Lecture
1.0 Course Unit

MEAM 691 Special Topics in Mechanics of Materials
This course will be offered when demand permits. The topics will change due to the interests and specialties of the instructor(s). Some topics could include: Compliant Mechanisms, Optimal Control, and Fluid-Structure interaction.
Course not offered every year
Activity: Lecture
1.0 Course Unit

MEAM 692 Topics in Mechanical Systems
This course will be offered when demand permits. The topics will change due to the interest of the instructor(s). Some topics could include: Electromagnetics, Control Theory, and Micro-Electro-Mechanical Systems.
Course not offered every year
Activity: Lecture
1.0 Course Unit

MEAM 699 MEAM Seminar
The seminar course has been established so that students get recognition for their seminar attendance as well as to encourage students to attend. Students registered for this course are required to attend weekly departmental seminars given by distinguished speakers from around the world. In order to obtain a satisfactory (S) grade, the student must not only attend more than 70% of the departmental seminars but also provide satisfactory answers to the mini-essay assignments (shown as quizzes on Canvas) about three of those seminars. It is recommended that the student pick the seminars closest to their research interests, but they may choose any seminar they wish. There will be three such quizzes distributed through the semester, graded pass/fail. Participation in the seminar course will be documented and recorded on the students transcript. In order to obtain their degree, doctoral students will be required to complete a seminar every quarter. Under special circumstances, i.e. in case of conflict with a course, the student may waive the seminar requirement for a particular semester by petition to the Graduate Group Chair.
One-term course offered either term
Activity: Seminar
1.0 Course Unit
MEAM 891 Shop Training: Special Topics
Intended for graduate students conducting research. Building upon the fundamentals of mechanical design, this hands-on, project-based course provides participants with the knowledge and skills necessary to design, analyze, manufacture, and test fully functional subtractive manufacturing processes and part components. Topics covered include an introduction to machine elements, analysis of the mechanics of machining, manufacturing technology, precision fabrication (milling, turning, and computer-controlled machining), metrology, tolerances, cutting-tool fundamentals and engineering materials. Graduate standing in engineering or permission of the instructor. Completion of MEAM 101 or suitable computer-aided design experience; this prerequisite may be waived at the discretion of the instructor if a CAD portfolio which includes technical drawings and assemblies is demonstrated.
One-term course offered either term
Activity: Lecture
0.25 Course Units

MEAM 892 Shop Training: Additive Fundamentals
Intended for graduate students conducting research. This course introduces students to the methods, techniques, and machines utilized in additive manufacturing spaces at Penn. The focus will be on iterative design using Fused Deposition Modeling, Stereolithography, and Polyjetting. These methods will be compared with alternatives such as Digital Light Processing, Selective Laser Sintering, Subtractive Manufacturing, and other fabrication techniques. Students will use computer-aided design tools and additive machines to solve problems of physical device and item manufacture. Graduate Standing in engineering or permission of the instructor. MEAM 101 or a suitable 3D computer aided design experience to be determined by the instructor.
One-term course offered either term
Activity: Lecture
0.25 Course Units

MEAM 895 Teaching Practicum
This course provides training in the practical aspects of teaching. The students will work with a faculty member to learn and develop teaching and communication skills. As part of the course, students will participate in a range of activities that may include: giving demonstration lectures, leading recitations, supervising laboratory experiments, developing instructional laboratories, developing instructional material, preparing homework assignments, and preparing examinations. Some of the recitations will be supervised and feedback and comments will be provided to the student by the faculty responsible for the course. At the completion of the 0.5 c.u. of teaching practicum, the student will receive a Satisfactory/Unsatisfactory grade and a written evaluation from the faculty member responsible for the course. The evaluation will be based on comments of the students taking the course and the impressions of the faculty.
One-term course offered either term
Activity: Lecture
0.5 Course Units

MEAM 899 Independent Study
For students who are studying specific advanced subject areas in mechanical engineering and applied mechanics. Before the beginning of the term, the student must submit a proposal outlining and detailing the study area, along with the faculty supervisor’s consent, to the graduate group chair for approval. At the conclusion of the independent study, the student should prepare a brief report.
One-term course offered either term
Activity: Independent Study
1.0 Course Unit

MEAM 990 Masters Thesis
Master’s Thesis
Activity: Masters Thesis
1.0 Course Unit

MEAM 995 Dissertation
Activity: Dissertation
1.0 Course Unit

MEAM 999 Thesis/Dissertation Research
For students working on an advanced research program leading to the completion of master’s thesis or Ph.D. dissertation requirements.
One-term course offered either term
Activity: Independent Study
1.0 Course Unit