PHYSICS (PHYS)

PHYS 008 Physics for Architects I
An introduction to the classical laws of mechanics, including static equilibrium, elasticity, and oscillations, with emphasis on topics most relevant to students in architecture. Students first learn and practice the use of mechanics concepts such as momentum, energy, force, and torque, then apply these ideas to analyze basic structural elements such as cables, trusses, and beams. Students considering the ARCH major will find that PHYS 008 provides a solid foundation for later study of architectural structures (e.g. ARCH 435). Students who have previously taken PHYS 101, PHYS 150, or PHYS 170 cannot subsequently take PHYS 008 for credit. Students with AP or Transfer Credit for PHYS 091 or 093 who complete PHYS008 will thereby surrender the AP or Transfer Credit. Prerequisite: Entrance credit in Algebra and Trigonometry. Also, credit is awarded for only one of the following courses: PHYS 008, 101, 170. Students with AP or Transfer Credit for PHYS 091 or 093 who complete PHYS 008 will thereby surrender the AP or Transfer Credit.
For BA Students: Physical World Sector
Taught by: Ashmanskas
Course offered fall; odd-numbered years
Activity: Lecture
1.0 Course Unit

PHYS 009 Physics for Architects II
Briefly reviews Newton's laws, then introduces waves, sound, light, fluids, heat, electricity, magnetism, and circuits, with emphasis on topics most relevant to students in architecture. Illustrates physics principles using examples drawn from architecture. Students with a strong high-school physics background may take PHYS 008 and PHYS 009 in either order. Prerequisite: Credit is awarded for only one of the following courses: PHYS 009, 102, 151, 171. Students with AP or Transfer Credit for PHYS 092 or 094 who complete PHYS 009 will surrender the AP or Transfer Credit.
For BA Students: Physical World Sector
Course offered fall; even-numbered years
Activity: Lecture
1.0 Course Unit

PHYS 016 Energy, Oil, and Global Warming
The developed world's dependence on fossil fuels for energy production has extremely undesirable economic, environmental, and political consequences, and is likely to be mankind's greatest challenge in the 21st century. We describe the physical principles of energy, its production and consumption, and environmental consequences, including the greenhouse effect. We will examine a number of alternative modes of energy generation - fossil fuels, biomass, wind, solar, hydro, and nuclear - and study the physical and technological aspects of each, and their societal, environmental and economic impacts over the construction and operational lifetimes. No previous study of physics is assumed. Prerequisites: Algebra and Trigonometry. May be counted as Science Studies for students with above prerequisite. Also, Course carries .5 course unit and student received grade. Permit required.
For BA Students: Physical World Sector
Activity: Lecture
1.0 Course Unit
Notes: May be counted as Science Studies for students with above prerequisite. Also, Course carries .5 course unit and student received grade. Permit required.

PHYS 050 Physics Laboratory I
Experiments in classical mechanics. Prerequisite: AP score of 5 on the Physics B or Physics C - Mechanics exam, or transfer credit for PHYS 91 or PHYS 93. Only for students with above prerequisite. Prerequisite: Course carries .5 course unit and student received grade. Permit required.
One-term course offered either term
Activity: Laboratory
0.5 Course Units

PHYS 051 Physics Laboratory II
Experiments in electromagnetism and optics. Prerequisite: AP score of 5 on the Physics B or Physics C - Electricity and Magnetism exam, or transfer credit for PHYS 92 or PHYS 94. PHYS 050. Only for students with above prerequisite. Also, Course carries .5 course unit and student received grade. Permit required.
One-term course offered either term
Activity: Laboratory
0.5 Course Units

PHYS 080 Physics and Consciousness
We will explore the basic classical and quantum physics concepts, and link them to newly observed physical phenomena and technologies, as well as to brain research, in the context of tools that physicists helped bring about like the seminal magnetic resonance imaging. The course content is mostly physics, although we link it to cognitive sciences, but the main focus is on motivating and explaining the basic physical laws behind new phenomena and related technologies. Examples include wave-particle duality and its relevance for technological applications, behavior of spin particles in a magnetic field to explain magnetic resonance imaging, ion flow through ion channels and ohm's law to explain electrical signal flow in our body, and other examples within the core of physics and bridging to interdisciplinary areas of material science and devices, biology and neuroscience. As we learn about particle spins, we will talk about brain imaging studies enabled by Nobel winning physics research. We will then discuss consciousness and free will, and read original texts by Schrodinger, Einstein and other physicists, and our course discussion will be uniquely motivated by related physical phenomena and experiments, including quantum entanglement and relativity of space and time. I will explain the basic ideas behind quantum computing and information processing, and we learn about basic quantum logigates and Dirac's matrix formalism in quantum mechanics. Prerequisite: This is an intro level physics course. Students do not have to have prior course in physics. Familiarity with algebra is a plus, although I will teach students the math required such as how to multiply matrices in case they have forgotten. An ideal student taking this course is a beginning student interested in a general STEM core. This course should not be taken by physics senior majors. It should be for non-science majors or science majors interested in learning about modern phenomena and technologies and the basic physics behind it, rather than for students woth advanced knowledge, as they may want more, and I will not be able to provide more because I have to satisfy the beginner students too and talk about basics required.
For BA Students: Natural Science and Math Sector
Taught by: Ashmanskas
Course usually offered in fall term
Activity: Lecture
1.0 Course Unit
PHYS 101 General Physics: Mechanics, Heat and Sound
An introduction to the classical laws of motion, including kinematics, forces in nature, Newton's laws of motion, conservation of energy and momentum, fluid statics and dynamics, oscillations, and waves. Suggested for students in a pre-health program. Credit is awarded for only one of the following courses: PHYS 008, PHYS 101, PHYS 150, or PHYS 170. Students with AP or Transfer Credit for PHYS 91 or PHYS 93 who complete PHYS 101 will thereby surrender the AP or Transfer Credit. For BA Students: Physical World Sector
Course offered summer, fall and spring terms
Activity: Lecture
1.0 Course Unit
Notes: Credit is awarded for only one of the following courses: PHYS 008, PHYS 101, PHYS 150, PHYS 170. Students with AP or Transfer Credit for PHYS 91 or PHYS 93 who complete PHYS 101 will thereby surrender the AP or Transfer Credit.

PHYS 102 General Physics: Electromagnetism, Optics, and Modern Physics
A continuation of PHYS 101 emphasizing an introduction to classical electricity and magnetism, light and optics, special relativity, the quantum theory of matter, and nuclear physics. Suggested for students in a pre-health program. Credit is awarded for only one of the following courses: PHYS 009, 102, 151, 171. Students with AP or Transfer Credit for PHYS 92 or PHYS 94 who complete PHYS 102 will thereby surrender the AP or Transfer Credit. For BA Students: Physical World Sector
Course offered summer, fall and spring terms
Prerequisite: PHYS 101 OR PHYS 150 OR PHYS 170
Activity: Lecture
1.5 Course Unit
Notes: Credit is awarded for only one of the following courses: PHYS 008, PHYS 101, PHYS 150, PHYS 170. Students with AP or Transfer Credit for PHYS 91 or PHYS 93 who complete PHYS 101 will thereby surrender the AP or Transfer Credit.

PHYS 137 Community Physics Initiative
This is an Academically Based Community Service Course (ABCS). It will be aligned to the Philadelphia School District curriculum in introductory physics at University City High School (UCHS). The UCHS curriculum roughly parallels the contents of first semester introductory physics (non-calculus) at Penn.
Course usually offered in fall term
Activity: Lecture
1.0 Course Unit

PHYS 140 Principles of Physics I (without laboratory)
The topics of this calculus-based course are: Classical laws of motions; interactions between particles; conservation laws and symmetry principles; particle and rigid body motion; gravitation, harmonic motion, and applications of mechanics to real-world problems. Engineering students only. Prerequisite: For Engineering students whose course of study does not require a physics laboratory course. Those who are enrolled in a dual degree program with the college must register for the lab-based version of this course, PHYS 150.
One-term course offered either term
Corequisite: MATH 104
Activity: Lecture
1.0 Course Unit

PHYS 141 Principles of Physics II (without laboratory)
The topics of this calculus-based course are: Electric and magnetic fields; Coulomb's, Gauss's, Ampere's, and Faraday's laws; DC and AC circuits; Maxwell's equations and electromagnetic radiation. Engineering students only. Prerequisite: For engineering students whose course of study does not require a physics laboratory course. Those who are enrolled in a dual degree program with the college must register for the lab-based version of this course, PHYS 151.
Course offered summer, fall and spring terms
Prerequisite: PHYS 140
Corequisite: MATH 114
Activity: Lecture
1.0 Course Unit

PHYS 150 Principles of Physics I: Mechanics and Wave Motion
This calculus-based course is recommended for science majors and engineering students. Classical laws of motion; interactions between particles; conservation laws and symmetry principles; particle and rigid body motion; gravitation, harmonic motion, and applications of mechanics to real-world problems. Credit is awarded for only one of the following courses: PHYS 008, PHYS 101, 150, 170. Students with AP or Transfer Credit for PHYS 91 or 93 who complete PHYS 150 will thereby surrender the AP or Transfer Credit. Prerequisite: Students in PHYS 150 should already have taken MATH 104 or the equivalent, or be taking it simultaneously with PHYS 150.
For BA Students: Physical World Sector
One-term course offered either term
Activity: Lecture
1.5 Course Unit
Notes: Credit is awarded for only one of the following courses: PHYS 008, PHYS 101, PHYS 150, PHYS 170. Students with AP or Transfer Credit for PHYS 91 or 93 who complete PHYS 150 will thereby surrender the AP or Transfer Credit.

PHYS 151 Principles of Physics II: Electromagnetism and Radiation
The topics of this calculus-based course are: Electric and magnetic fields; Coulomb's, Gauss's, Ampere's, and Faraday's laws; DC and AC circuits; Maxwell's equations and electromagnetic radiation. Credit is awarded for only one of the following courses: PHYS 009, 102, 151, 171. Students with AP or Transfer Credit for PHYS 92 or 94 who complete PHYS 151 will thereby surrender the AP or Transfer Credit. Prerequisite: Students in PHYS 151 should already have taken MATH 114 or the equivalent, or be taking it simultaneously with PHYS 151.
For BA Students: Physical World Sector
Course offered summer, fall and spring terms
Prerequisite: PHYS 150
Activity: Lecture
1.5 Course Unit
PHYS 170 Honors Physics I: Mechanics and Wave Motion
This course parallels and extends the content of PHYS 150, at a significantly higher mathematical level. Recommended for well-prepared students in engineering and the physical sciences, and particularly for those planning to major in physics. Classical laws of motion: interaction between particles; conservation laws and symmetry principles; rigid body motion; non-inertial reference frames; oscillations. Prerequisite: Benjamin Franklin Seminar. Credit is awarded for only one of the following courses: PHYS 008, 101, 150, 170. Students with AP or Transfer Credit for PHYS 91 or 93 who complete PHYS 170 will thereby surrender the AP or Transfer Credit.
For BA Students: Physical World Sector
Course usually offered in fall term
Prerequisite: MATH 104
Corequisite: MATH 114 OR MATH 116 OR PHYS 170
Activity: Seminar
1.5 Course Unit

PHYS 171 Honors Physics II: Electromagnetism and Radiation
This course parallels and extends the content of PHYS 151, at a somewhat higher mathematical level. Recommended for well-prepared students in engineering and the physical sciences, and particularly for those planning to major in physics. Electric and magnetic fields; Coulomb's, Ampere's, and Faraday's laws; special relativity; Maxwell's equations, electromagnetic radiation. For BA Students: Physical World Sector
Course usually offered in spring term
Prerequisite: (MATH 114 OR MATH 116) AND (PHYS 150 OR PHYS 170)
Corequisite: MATH 240 OR MATH 260
Activity: Seminar
1.5 Course Unit
Notes: Benjamin Franklin Seminar. Credit is awarded for only one of the following courses: PHYS 009, PHYS 102, PHYS 151, or PHYS 171. Students with AP or Transfer Credit for PHYS 092 or PHYS 094 who complete PHYS 171 will thereby surrender the AP or Transfer Credit.

PHYS 230 Principles of Physics III: Thermal Physics and Waves
Laws of thermodynamics, gas laws and heat engines. Waves on a string, electromagnetic waves including optical phenomena such as refraction, interference and diffraction. Introduction to special relativity including time dilation, length contraction, simultaneity, Lorentz transforms and relativistic energy and momentum. Students are encouraged but not required to take Math 240 concurrently or in advance.
Course usually offered in fall term
Prerequisite: (PHYS 150 OR PHYS 151 OR PHYS 170 OR PHYS 171) AND (MATH 104 OR MATH 114 OR MATH 116)
Corequisite: MATH 240
Activity: Lecture
1.0 Course Unit

PHYS 240 Principles of Physics IV: Modern Physics (without laboratory)
An introduction to the experimental basis for and principles of quantum mechanics, properties of electrons, protons, neutrons, and the elements of atomic structure and nuclear structure. Electromagnetic radiation and photons; interaction of photons with electrons, atoms, and nuclei. Students are encouraged but not required to take Math 241 concurrently or in advance.
Course usually offered in spring term
Prerequisite: (PHYS 150 OR PHYS 151 OR PHYS 170 OR PHYS 171) AND MATH 240
Corequisite: MATH 240
Activity: Lecture
1.0 Course Unit

PHYS 250 Principles of Physics IV: Modern Physics
An introduction to the experimental basis for and principles of quantum mechanics, properties of electrons, protons, neutrons, and the elements of atomic structure and nuclear structure. Electromagnetic radiation and photons; interaction of photons with electrons, atoms, and nuclei. Students are encouraged but not required to take Math 241 concurrently or in advance.
Course usually offered in spring term
Prerequisite: (PHYS 150 OR PHYS 151 OR PHYS 170 OR PHYS 171) AND MATH 240
Corequisite: MATH 240
Activity: Lecture
1.5 Course Unit
Notes: PHYS 250 students take a two-hour lab

PHYS 280 Physical Models of Biological Systems
Classic case studies of successful reductionistic models of complex phenomena, emphasizing the key steps of making estimates, using them to figure out which physical variables and phenomena will be most relevant to a given system, finding analogies to purely physical systems whose behavior is already known, and embodying those in a mathematical model, which is often implemented in computer code. Topics may include bacterial genetics, genetic switches and oscillators; systems that sense or utilize light; superresolution and other new microscopy methods; and vision and other modes of sensory transduction.
Course usually offered in fall term
Also Offered As: BCHE 280
Prerequisite: (PHYS 101 OR MATH 104) AND (MATH 114 OR MATH 104) AND (MATH 115 OR MATH 116)
Activity: Lecture
1.0 Course Unit

PHYS 299 Independent Study
Special projects and independent study under the direction of faculty member. Prerequisite: Repetitive Credit
One-term course offered either term
Activity: Independent Study
1.0 Course Unit
Notes: Repetitive credit
PHYS 314 Ocean-Atmosphere Dynamics and Implications for Future Climate Change
This course covers the fundamentals of atmosphere and ocean dynamics, and aims to put these in the context of climate change in the 21st century. Large-scale atmospheric and oceanic circulation, the global energy balance, and the global energy balance, and the global hydrological cycle. We will introduce concepts of fluid dynamics and we will apply these to the vertical and horizontal motions in the atmosphere and ocean. Concepts covered include: hydrostatic law, buoyancy and convection, basic equations of fluid motions, Hadley and Ferrel cells in the atmosphere, thermohaline circulation, Sverdrup ocean flow, modes of climate variability (El-Nino, North Atlantic Oscillation, Southern Annular Mode). The course will incorporate student led discussions based on readings of the 2007 Intergovernmental Panel on Climate Change (IPCC) report and recent literature on climate change. Aimed at undergraduate or graduate students who have no prior knowledge of meteorology or oceanography or training in fluid mechanics. Previous background in calculus and/or introductory physics is helpful. This is a general course which spans many subdisciplines (fluid mechanics, atmospheric science, oceanography, hydrology).
Taught by: Marinov
Course usually offered in spring term
Also Offered As: ENVS 312, ENVS 640
Prerequisite: MATH 114
Activity: Lecture
1.0 Course Unit

PHYS 351 Analytical Mechanics
An intermediate course in the statics and dynamics of particles and rigid bodies. Lagrangian dynamics, central forces, non-inertial reference frames, and rigid bodies.
Course usually offered in spring term
Prerequisite: (PHYS 150 AND PHYS 151) OR (PHYS 170 AND PHYS 171)
AND (MATH 104 OR MATH 114) AND MATH 240
Activity: Lecture
1.0 Course Unit

PHYS 358 Data Analysis for the Natural Sciences
This is a course on the fundamentals of data analysis and statistical inference for the natural sciences. Topics include probability distributions, linear and non-linear regression, Monte Carlo methods, frequentist and Bayesian data analysis, parameter and error estimation, Fourier analysis, power spectra, and signal and image analysis techniques. Students will obtain both the theoretical background in data analysis and get hands-on experience analyzing real scientific data.
Prerequisite: Prior programming experience.
Taught by: Sako
Course offered fall, even-numbered years
Prerequisite: MATH 240 AND PHYS 260
Activity: Lecture
1.0 Course Unit

PHYS 359 Data Analysis for the Natural Sciences II: Machine Learning
This is a course on data analysis and statistical inference for the natural sciences focused on machine learning techniques. The main topics are: Review of modern statistics, including probability distribution functions and their moments, conditional distributions and Bayes’ theorem, parameter estimation, Markov chains; Fundamentals of machine learning, including training/validation samples, cross-validation, supervised vs. unsupervised learning, regularization and resampling methods, tree-based methods, support vector machines, neural networks, deep learning and image analysis with convolutional neural networks. Students will obtain both the theoretical background in data analysis and get hands-on experience analyzing real scientific data. This course forms a two-course sequence with Phys 358. Students must also have prior programming experience in python.
Taught by: Jain
Course usually offered in spring term
Prerequisite: Math 240
Activity: Lecture
1.0 Course Unit

PHYS 360 Statistics, Data Mining, and Machine Learning
This is a practical course on computing, numerical methods, statistics, and data analysis techniques with particular emphasis on data mining and machine learning applied to large datasets. Topics include basic numerical methods and algorithms, probability theory, classical and Bayesian statistical inference, model fitting, Monte Carlo methods, and classification. We will be using Python for the exercises. Prior experience in programming (in any language) is required.
Taught by: Sako
Course usually offered in spring term
Prerequisite: MATH 240 AND CIS 110
Activity: Lecture
1.0 Course Unit

PHYS 361 Electromagnetism I: Electricity and Potential Theory
First term course in intermediate electromagnetism. Topics include electrostatics, static potential theory, multipole expansions, Laplace equation, image solutions, fields in polarized matter.
Course usually offered in fall term
Also Offered As: PHYS 561
Prerequisite: (PHYS 151 OR PHYS 171) AND MATH 241
Activity: Lecture
1.0 Course Unit

PHYS 362 Electromagnetism II: Magnetism, Maxwell’s Equations, and Electromagnetic Waves
Second term course in intermediate electromagnetism. Topics include magnetostatic forces and fields, magnetized media, Maxwell’s equations, Poynting and stress theorems, free field solutions to Maxwell's equations, and radiation from separable and nonseparable time dependent charge and current distributions.
Course usually offered in spring term
Also Offered As: PHYS 562
Prerequisite: PHYS 361
Activity: Lecture
1.0 Course Unit
PHYS 364 Laboratory Electronics
A laboratory-intensive survey of analog and digital electronics, intended to teach students of physics or related fields enough electronics to be effective in experimental research and to be comfortable learning additional topics from reference textbooks. Analog topics include voltage dividers, impedance, filters, operational amplifier circuits, and transistor circuits. Digital topics may include logic gates, finite-state machines, programmable logic devices, digital-to-analog and analog-to-digital conversion, and microcomputer concepts. Recommended for students planning to do experimental work in physical science. Prerequisite: Familiarity with electricity and magnetism at the level of PHYS 102, 141, 151, 171. One-term course offered either term
Also Offered As: PHYS 564
Activity: Lecture
1.0 Course Unit

PHYS 401 Thermodynamics and the Introduction to Statistical Mechanics and Kinetic Theory
Entropy, temperature, and introduction to ensemble theory, distribution functions, and phase transitions. Course usually offered in fall term
Also Offered As: PHYS 240 OR PHYS 250
Prerequisite: PHYS 240 OR PHYS 250
Activity: Lecture
1.0 Course Unit

PHYS 411 Introduction to Quantum Mechanics I
An introduction to the principles of quantum mechanics designed for physics majors and graduate students in physics-related disciplines. The Schrodinger equation operator formalism, central field problem, angular momentum, and spin. Application to one-dimensional and central field problems. Course usually offered in fall term
Also Offered As: PHYS 511
Prerequisite: (PHYS 150 OR PHYS 170) AND (PHYS 240 OR PHYS 250) AND (MATH 240 OR MATH 260)
Activity: Lecture
1.0 Course Unit

PHYS 412 Introduction to Quantum Mechanics II
Perturbation theory, variational principle, application of the quantum theory to atomic, molecular, and nuclear systems, and their interaction with radiation. Course usually offered in spring term
Also Offered As: PHYS 512
Prerequisite: PHYS 411
Activity: Lecture
1.0 Course Unit

PHYS 414 Laboratory in Modern Physics
In this course you will have the opportunity to do a variety of experiments, ranging from 'classic experiments' such as measuring G with a torsion balance, determining the relativistic mass of the electron, and muon lifetime, to experiments studying atomic spectroscopy, NMR, Optical pumping, Mossbauer effect, nuclear energy levels, interaction of gamma rays with matter, single photon interference, and magnetic susceptibility. There are also experiments using a High-Tc superconducting tunnel junction and a PET scanner. You will learn basic statistics, become proficient in analysis using Python, acquire an understanding of systematic errors, and learn how to write a professional report. Many of the laboratories provide excellent opportunities to exercise, and expand upon, the knowledge you have gained in your physics courses. Taught by: Williams
Course usually offered in spring term
Also Offered As: PHYS 521
Prerequisite: PHYS 250 OR PHYS 411
Activity: Lecture
1.0 Course Unit

PHYS 421 Modern Optics
Interaction of light with matter. Traditional imaging and polarization optics. Interference, diffraction, coherence, absorption, dispersion, spectroscopy, stimulated emission, introduction to lasers and non-linear processes. Course not offered every year
Also Offered As: PHYS 529
Prerequisite: (PHYS 240 OR PHYS 250) AND PHYS 362
Activity: Lecture
1.0 Course Unit

PHYS 433 Order of Magnitude Physics
This course focuses on the art of estimating physical quantities to within the nearest factor of ten. Problem solving techniques such as dimensional analysis and scaling relations will be covered and applied to a wide range of topics including fluid mechanics, waves and sound, atomic physics, material properties, astrophysics, everyday life, and more. The course is intended for advanced undergraduate students. One-term course offered either term
Prerequisite: PHYS 411
Activity: Lecture
1.0 Course Unit

PHYS 499 Senior Honor Thesis
Experimental and theoretical research projects in various areas of physics planned by student in consultation with a member of faculty. A written thesis and an oral presentation and defense are required. One-term course offered either term
Prerequisite: PHYS 412 AND PHYS 414
Activity: Independent Study
1.0 Course Unit

PHYS 500 Mathematical Methods of Physics
A discussion of those concepts and techniques of classical analysis employed in physical theories. Topics include complex analysis, Fourier series and transforms, ordinary and partial equations, Hilbert spaces, among others. Course usually offered in fall term
Also Offered As: MATH 594
Activity: Lecture
1.0 Course Unit
PHYS 501 Introduction to Research
Introduction to research in particle, nuclear, condensed matter and astrophysics. Selected current topics from journals. Prerequisite: Taken by all first-year graduate students. This is a required seminar that does not carry or a grade.
One-term course offered either term
Activity: Lecture
0.0 Course Units

PHYS 503 General Relativity
This is a graduate level, introductory course in general relativity. The basics of general relativity will be covered with a view to understanding the mathematical background, the construction of the theory, and applications to the solar system, black holes, gravitational waves and cosmology. The latter part of the course will cover some of the basic modern topics in modern cosmology, including the current cosmological model, the accelerating universe, and open questions driving current research.
One-term course offered either term
Activity: Lecture
1.0 Course Unit

PHYS 505 Introduction to Cosmology
Introduction to physical cosmology emphasizing recent ideas on the very early evolution of the universe. The course will introduce standard big bang cosmology, new theories of the very early universe, and the key observations that have tested and will be testing these ideas. No prior knowledge of astrophysics, cosmology, general relativity, or particle physics will be assumed, although aspects of each will be introduced as part of the course. The course is intended for graduate students and advanced undergraduates.
Course offered spring; odd-numbered years
Activity: Lecture
1.0 Course Unit

PHYS 516 Electromagnetic Phenomena
Survey of electrodynamics, focusing on applications to research done in the Department. Topics include mathematical structure and relativistic invariance properties of Maxwell equations, tensor methods, and the generation and scattering of radiation, in vacuum and in materials. Applications vary from year to year but include optical manipulation, astrophysical phenomena, and the generalizations from Maxwell’s theory to those of other fundamental interactions (strong, electroweak, and gravitational forces).
Course usually offered in spring term
Activity: Lecture
1.0 Course Unit

PHYS 517 Particle Cosmology
This introduction to cosmology will cover standard big bang cosmology, formation of large-scale structure, theories of the early universe and their observational predictions, and models of dark energy. It is intended for graduate students or advanced undergraduates. No prior knowledge of general relativity or field theory will be assumed, although aspects of each will be introduced as part of the course.
One-term course offered either term
Activity: Lecture
1.0 Course Unit

PHYS 518 Introduction to Condensed Matter Physics
An introduction to condensed matter physics designed primarily for advanced undergraduate and graduate students desiring a compact survey of the field. Band theory of solids, phonons, electrical magnetic and optical properties of matter, and superconductivity. Prerequisite: Undergraduate training in Quantum mechanics ans Statistical Thermodynamics.
Course usually offered in spring term
Activity: Lecture
1.0 Course Unit

PHYS 521 Advanced Laboratory
In this course you will have the opportunity to do a variety of experiments, ranging from ‘classic experiments’ such as measuring G with a torsion balance, determining the relativistic mass of the electron, and muon lifetime, to experiments studying atomic spectroscopy, NMR, Optical pumping, Mossbauer effect, nuclear energy levels, interaction of gamma rays with matter, single photon interference, and magnetic susceptibility. There are also experiments using a High-Tc superconducting tunnel junction and a PET scanner. You will learn basic statistics, become proficient in analysis using Python, acquire an understanding of systematic errors, and learn how to write a professional report. Many of the laboratories provide excellent opportunities to exercise, and expand upon, the knowledge you have gained in your physics courses.
Course usually offered in spring term
Also Offered As: PHYS 414
Prerequisite: PHYS 250 OR PHYS 411
Activity: Lecture
1.0 Course Unit

PHYS 522 Introduction to Elementary Particle Physics
An introduction to elementary particles (photons, leptons, hadrons, quarks), their interactions, and the unification of the fundamental forces.
Course not offered every year
Activity: Lecture
1.0 Course Unit

PHYS 526 Astrophysical Radiation
This is a course on the theory of the interaction of light and matter designed primarily for graduate and advanced undergraduate students to build the basic tools required to do research in astrophysics. Topics to be discussed include structure of single- and multi-electron atoms, radiative and collisional processes, spectral line formation, opacity, radiation transfer, analytical and numerical methods, and a selection of applications in astrophysics based on student research interest.
Course offered fall; even-numbered years
Activity: Lecture
1.0 Course Unit

PHYS 528 Introduction to Liquid Crystals
Overview of liquid crystalline phases, their elasticity, topology, and dynamics.
One-term course offered either term
Activity: Lecture
1.0 Course Unit

PHYS 529 Modern Optics
Course offered spring; even-numbered years
Also Offered As: PHYS 421
Prerequisite: (PHYS 240 OR PHYS 250) AND PHYS 362
Activity: Lecture
1.0 Course Unit
PHYS 530 Modern Optical Physics and Spectroscopy
Introduction to contemporary optics. Topics include propagation and guiding of light waves, interaction of electromagnetic radiation with matter, lasers, non-linear optics, coherent transient phenomena, photon correlation spectroscopies and photon diffusion. Prerequisite: Graduate level course for beginning or intermediate graduate students in Physics, but is likely to be of use to a broader community including beginning graduate students whose research involves light scattering in Electrical Engineering, Chemistry, and Biophysics, and advanced undergraduates. Prerequisite: Working knowledge of electricity and magnetism and quantum mechanics. For example, at least at the level of Physics 362, PHYS 411.
Course not offered every year
Activity: Lecture
1.0 Course Unit

PHYS 531 Quantum Mechanics I
Graduate-level introduction to quantum theory. Topics covered include the postulates of quantum mechanics, unitary operators, time evolution and Schrödinger’s equation, theory of angular momentum, density matrices, and Bell’s inequalities. Other topics may include semi-classical (WKB) approximation, bound state techniques, periodic potentials and resonance phenomena. Prerequisite: A minimum of one semester of Quantum Mechanics at the advanced undergraduate level.
Course usually offered in fall term
Activity: Lecture
1.0 Course Unit

PHYS 532 Quantum Mechanics II
Continuation of PHYS 531. Topics covered include the path integral formulation, symmetries in quantum mechanics, scattering theory, and decoherence. Other topics may include time independent and time dependent perturbation theory, and atomic and molecular systems.
Course usually offered in spring term
Prerequisite: PHYS 531
Activity: Lecture
1.0 Course Unit

PHYS 533 Topics in Cosmology
This course aims to survey three or four topics of current research interest in cosmology, mostly at the level of review articles. The topics will be covered in greater depth and with more connections to ongoing research than the introductory cosmology course, ASTR 525. The course will be largely accessible to first and second year graduate students. Some exposure to cosmology and general relativity will be helpful but the first two weeks will attempt to bridge that gap. The topic selection will be done in part with input from the students.
Course not offered every year
Activity: Lecture
1.0 Course Unit

PHYS 560 Biological Physics
The course will explore the basic physical principles behind the structure and function of life across many length and time scales (molecule, cell, organism, population). Emphasis will be given on overarching physical themes such as entropy and biological noise, and how they affect the organization of living matter and its emergent properties. Topics may include biopolymers and single molecule biophysics, molecular motors, gene and transcription networks, pattern formation in biological systems, phyllotaxis, neural computing and evolution. Prerequisite: Recommended: Basic background in biology.
Course not offered every year
Also Offered As: BCHE 580
Prerequisite: MATH 240 AND MATH 241 AND PHYS 401
Activity: Lecture
1.0 Course Unit
Notes: Recommended: Basic background in biology.

PHYS 561 Electromagnetism I
First term course in intermediate electromagnetism. Topics include electrostatics, static potential theory, multipole expansions, Laplace equation, image solutions, fields in polarized matter.
Course usually offered in fall term
Also Offered As: PHYS 361
Prerequisite: (PHYS 151 OR PHYS 171) AND MATH 241
Activity: Lecture
1.0 Course Unit

PHYS 562 Electromagnetism II: Magnetism, Maxwell’s Equations, and Electromagnetic Waves
Second term course in intermediate electromagnetism. Topics include magnetostatic forces and fields, magnetized media, Maxwell’s equations, Poynting and stress theorems, free field solutions to Maxwell’s equations, and radiation from separable and nonseparable time dependent charge and current distributions.
Course usually offered in spring term
Also Offered As: PHYS 362
Prerequisite: PHYS 361
Activity: Lecture
1.0 Course Unit

PHYS 564 Laboratory Electronics
A laboratory-intensive survey of analog and digital electronics, intended to teach students of physics or related fields enough electronics to be comfortable learning additional topics on their own from a reference such as Horowitz and Hill. Specific topics will vary from year to year from the selection of topics listed below. Analog topics may include voltage dividers, impedance, filters, operational amplifier circuits, and transistor circuits. Digital topics may include logic gates, finite-state machines, programmable logic devices, digital-to-analog and analog-to-digital conversion, and microcomputer concepts. Recommended for students planning to do experimental work in physical science. Prerequisite: Familiarity with electricity and magnetism at the level of PHYS 102, 141, 151, 171.
One-term course offered either term
Also Offered As: PHYS 364
Activity: Lecture
1.0 Course Unit

PHYS 580 Biological Physics
PHYS 585 Theoretical and Computational Neuroscience
This course will develop theoretical and computational approaches to structural and functional organization in the brain. The course will cover: (i) the basic biophysics of neural responses, (ii) neural coding and decoding with an emphasis on sensory systems, (iii) approaches to the study of networks of neurons, (iv) models of adaptation, learning and memory, (v) models of decision making, and (vi) ideas that address why the brain is organized the way that it is. The course will be appropriate for advanced undergraduates and beginning graduate students. A knowledge of multi-variable calculus, linear algebra and differential equations is required (except by permission of the instructor). Prior exposure to neuroscience and/or Matlab programming will be helpful. Taught by: Vijay Balasubramanian
Course usually offered in spring term
Also Offered As: BE 530, BIBB 585, NGG 594, PSYC 539
Activity: Lecture
1.0 Course Unit

PHYS 601 Introduction to Field Theory
Elementary relativistic quantum field theory of scalar, fermion, and Abelian gauge fields. Feynman Diagrams. Course usually offered in fall term
Activity: Lecture
1.0 Course Unit

PHYS 611 Statistical Mechanics
Introduction to the canonical structure and formulation of modern statistical mechanics. The thermodynamic limit. Entropic and depletion forces. Gas and liquid theory. Phase transitions and critical phenomena. The virial expansion. Quantum statistics. Path integrals, the Fokker-Planck equation and stochastic processes. Course usually offered in fall term
Prerequisite: PHYS 401 AND PHYS 531
Activity: Lecture
1.0 Course Unit

PHYS 612 Advanced Statistical Mechanics
In depth study of classical and quantum lattice spin models, perturbation techniques, and the renormalization group. Course not offered every year
Prerequisite: PHYS 611
Activity: Lecture
1.0 Course Unit

PHYS 622 Introduction to Elementary Particle Physics
Introduction to the phenomenology of elementary particles, strong and weak interactions, symmetries. Course not offered every year
Prerequisite: PHYS 601
Activity: Lecture
1.0 Course Unit

PHYS 632 Relativistic Quantum Field Theory
Advanced topics in field theory, including renormalization theory. Course not offered every year
Prerequisite: PHYS 601
Activity: Lecture
1.0 Course Unit

PHYS 633 Relativistic Quantum Field Theory
A continuation of PHYS 632, dealing with non-Abelian gauge theories. Course not offered every year
Prerequisite: PHYS 632
Activity: Lecture
1.0 Course Unit

PHYS 661 Solid State Theory I
This course is intended to be an introductory graduate course on the physics of solids, crystals and liquid crystals. There will be a strong emphasis on the use and application of broken and unbroken symmetries in condensed matter physics. Topics covered include superconductivity and superfluidity. Course not offered every year
Activity: Lecture
1.0 Course Unit

PHYS 662 Solid State Theory II
A continuation of PHYS 661. Course not offered every year
Activity: Lecture
1.0 Course Unit

PHYS 696 Advanced Topics in Theoretical Physics
Course not offered every year
Activity: Lecture
1.0 Course Unit

PHYS 990 Masters Thesis
One-term course offered either term
Activity: Masters Thesis
1.0 Course Unit

PHYS 995 Dissertation
One-term course offered either term
Activity: Dissertation
1.0 Course Unit

PHYS 999 Independent Study
One-term course offered either term
Activity: Independent Study
1.0 Course Unit