ELECTRICAL ENGINEERING, MSE

The MSE Program in Electrical Engineering gives students the theoretical and technological foundation needed to deal with the new ideas and new applications that are the hallmarks of modern electrical engineering. A major advantage of our MSE program is that it allows students to focus their education according to their interests and goals, from nanotechnology and circuits, to embedded systems or robotics. The MSE Program in Electrical Engineering gives students the theoretical foundation and the interdisciplinary skills needed to deal with the new ideas and new applications that are the hallmarks of modern electroscience. A major advantage of our MSE Program allows you to tailor your education to your own interests and goals, from Electromagnetics and Photonics, sensors and MEMS to VLSI and Nanotechnology.

For more information: http://www.ese.upenn.edu/current-students/ masters/index.php (http://www.ese.upenn.edu/current-students/ masters/)

Electrical Engineering Degree Requirements

10 course units are required for MSE in Electrical Engineering. ¹

Course	Title	Code
Units		

	EE Core		
	Select 5 required 2	course units in any of the three areas below:	5
	Physical Devices	and Nano Systems	
	ESE 5090	Quantum Circuits and Systems	
	ESE 5100	Electromagnetic and Optics	
	ESE 5130	Prin of Quantum Tech	
	ESE 5210	The Physics of Solid State Energy Devices	
	ESE 5230	Quantum Engineering	
	ESE 5250	Nanoscale Science and Engineering	
	ESE 5290	Introduction to Micro- and Nano- electromechanical Technologies	
	ESE 5360	Nanofabrication and Nanocharacterization	
	Circuits and Comp	outer Engineering	
	ESE 5150	Internet of Things Sensors and Systems	
	ESE 5160	IoT Edge Computing	
	ESE 5190	Smart Devices	
	ESE 5320	System-on-a-Chip Architecture	
	ESE 5350	Electronic Design Automation	
	ESE 5390	Hardware/Software Co-Design for Machine Learning	
	ESE 5700	Digital Integrated Circuits and VLSI- Fundamentals	
	ESE 5720	Analog Integrated Circuits	
	ESE 5730	Chips-design	
	ESE 5780	RFIC (Radio Frequency Integrated Circuit)	

Design

Power Electronics

ESE 5800

ESE 6680	Mixed Signal Circuit Design and Modeling			
Information and De	ecision Systems			
ESE 5000	Linear Systems Theory			
ESE 5030	Simulation Modeling and Analysis			
ESE 5050	Feedback Control Design and Analysis			
ESE 5060	Introduction to Optimization Theory			
ESE 5070	Introduction to Networks and Protocols			
ESE 5120	Dynamical Systems for Engineering and Biological Applications			
ESE 5140	Graph Neural Networks			
ESE 5280	Estimation and Detection Theory			
ESE 5300	Elements of Probability Theory			
ESE 5310	Digital Signal Processing			
ESE 5380	Machine Learning for Time-Series Data			
ESE 5420	Statistics for Data Science			
ESE 5450	Data Mining: Learning from Massive Datasets			
ESE 5460	Principles of Deep Learning			
ESE Electives				
Select 2 ESE electives ³				
SEAS Electives				
Select 1 SEAS elective ^{4, 5}				
Open Electives				
Select 2 open electives ⁶				
Total Course Units				

- 1 Students must complete ten (10) course units at the graduate level (5000+).
 - · A maximum of two (2) graduate-level course units may be transferred from another school to apply towards the degree. These cannot have been used to fulfill requirements of an undergraduate
 - · Students must be registered with the 5000-level course number to be eligible as a graduate level course. Any cross-listed section at the 4000-level or below is ineligible towards the degree.
- ² Students can select any combination from this list, and are not limited to a single area.
- Select any graduate-level ESE course at the 5000 and 6000 level.
- Select 1 graduate-level course within: ESE, CIS, CIT, IPD, MEAM, EAS, or ENM. A maximum of two (2) CIT course units are allowed towards the degree.
- Only the following EAS courses are allowed:
 - · EAS 5070 Intellectual Property and Business Law for Engineers
 - · EAS 5100 Technical Communication and Academic Wrting for Nonnative Speakers of English
 - · EAS 5120 Engineering Negotiation
 - · EAS 5450 Engineering Entrepreneurship I
 - · EAS 5460 Engineering Entrepreneurship II
 - · EAS 5950 Foundations of Leadership
 - ESE 6800 Special Topics in Electrical and Systems Engineering can be taken several times and counted more than once towards the degree. Each ESE 6800 Special Topics in Electrical and Systems Engineering course taken must address different topics to be eligible.

2 Electrical Engineering, MSE

- A maximum of 1 ESE 5990 course unit can be used toward the degree.
- If a thesis is completed, it will count for 2 course units of ESE 5970 Master's Thesis).
- Select from graduate courses at Penn in SEAS, SAS, Medicine, Law, Wharton MBA, Social Policy, and Education. These must have technical/scientific content and relevance to the student's program. Approval must be obtained from the ESE department prior to enrollment in the course.

The degree and major requirements displayed are intended as a guide for students entering in the Fall of 2024 and later. Students should consult with their academic program regarding final certifications and requirements for graduation.