BIOMEDICAL GRADUATE STUDIES (BIOM)

BIOM 502 Molecular Basis of Disease
Taught by: Dr. Hao Shen and John Lynch
Course usually offered in spring term
Prerequisites: Permission of course directors. This course is reserved for BGS students only.
Activity: Lecture
1 Course Unit
Notes: BIOM 502 introduces students to basic mechanisms of disease and examines a different disease each week. The focus of the course will be on understanding the pathophysiology of the diseases and how research has enhanced not only our knowledge of disease mechanisms but has also led to improved therapy for patients with these diseases.

BIOM 510 Case Studies in Translational Research (CSTR)
This course is open to MD/PhD, VMD/PhD and Biomedical Graduate Studies PhD students. All second year combined degree students are expected to take this course unless excused by Dr. Brass. Enrollment is limited to 24 students but interested VMD/PhD and BGS students are welcome as space permits. CSTR is a seminar style course where groups of students work with selected Penn faculty to prepare a discussion and literature review on disease topics. Topics will include gene therapy for hemophilia, retinal disease and wound healing, cytokine therapies for immune disorders, genetic sleep disturbances and vaccine development. Most of the course will focus on the analysis of successful translational research projects that are taking place here at Penn.
Taught by: Drs. Mitch Weiss, Emma Meagher and Skip Brass
Course usually offered in fall term
Prerequisite: Permission of Instructor
Activity: Seminar
1 Course Unit

BIOM 555 Regulation of the Genome
Regulation of gene expression including chromatin structure, transcription, DNA modification, RNA processing, translation, control of gene expression via microRNAs and post-translational processing.
Taught by: Drs. Zhaolan Zhou and Ben Black
Course usually offered in spring term
Prerequisite: Permission of Instructors
Activity: Lecture
1 Course Unit

BIOM 600 Cell Biology
BIOM 600 is an intermediate level graduate course designed to introduce students to the molecular components and physiological mechanisms that underlie the structure and function of cells. The course is designed as an in-depth survey to cover general concepts central to the field of biochemistry and cell biology and to emphasize these concepts within the context of current scientific research questions and technical approaches. Lectures will focus on recent discoveries in contemporary cell biology involving (i) basic cellular biochemistry; (ii) mechanisms of membrane transport and excitability; (iii) intracellular compartmentalization and protein/vesicle targeting, organelle biogenesis; (iv) cytoskeletal architecture, cell motility and adhesion; and (v) molecular mechanisms of signal transduction. Efforts will be made to familiarize students with recent technical advances in molecular, biochemical, microscopic, spectroscopic, and electrophysiologic techniques.
Taught by: Dr. Richard Assoian, Director. Dr. Kurt Engleka, Assistant Course Director. Theme Directors: Drs. Mickey Marks, John Weisel, Toshi Hoshi, and Xiaolu Yang
Course usually offered in spring term
Activity: Lecture
1 Course Unit

BIOM 611 Statistics in Experimental Design and Analysis
BIOM 611 is an introductory course providing an overview of fundamental concepts in biostatistics as they relate to experimental design and analysis. It introduces the student as well to the related concepts of premise and reproducibility. The first unit introduces the scientific method as a series of six steps. In the first unit we explore the strength of evidence supporting a particular research hypothesis, consider the generalizability of our conclusion and estimate the magnitude of the effect. The second unit specifically introduces methods for comparing means and proportions between groups, and the analysis of paired data. We conclude by considering differences in means and proportions between multiple groups and associations between quantitative variables. Analysis of variance (ANOVA), correlation and linear regression are explored. Statistical methods will be implemented using the software package R (in Rstudio). Students will have an opportunity to code directly in R or to use the graphical user interface, Rcmdr to facilitate work with R.
Taught by: Mary Putt, PhD
Course usually offered in spring term
Prerequisites: This course is NOT recommended for students with a strong quantitative background. Those of you with a strong background should take a statistics course with more rigorous mathematical underpinnings and or with exposure to more advanced statistical methods. Discuss with advisor or see the following page for detailed instructions. www.med.upenn.edu/bgs/documents/BGSStatisticsRequirements10-6-16.pdf
Activity: Lecture
1 Course Unit