Computer Engineering is the discipline that designs and engineers computer systems from digital circuits, through compilers and runtime systems, to networking and world-wide distributed systems. As an engineering discipline, the computer engineer must appreciate the physical aspects of computations (energy, delay, area, reliability, costs) and be able to expertly navigate the multidimensional tradeoff space associated with implementing computations. Since today’s high performance programmable computing devices mean enormous computational tasks can be performed entirely in software, the computer engineer must manage computational capabilities and functionalities which migrate between hardware and software driven by advancing technology and these engineering tradeoffs. Recent advances in manufacturing make it economical to construct systems containing billions of components and millions of lines of code, and these systems are increasingly invaluable in life-critical and real-time systems; computer engineering is the discipline that seeks to understand how to design and manage systems of this complexity while providing adequate guarantees of safety and trustworthiness for such systems.

For more information: https://www.seas.upenn.edu/prospective-students/undergrad/majors/computer-engineering/

Computer Engineering (CMPE) Major Requirements

37 course units are required.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Course Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIS 120</td>
<td>Programming Languages and Techniques I</td>
<td>1</td>
</tr>
<tr>
<td>CIS 121</td>
<td>Programming Languages and Techniques II</td>
<td>1</td>
</tr>
<tr>
<td>ESE 150</td>
<td>Digital Audio Basics</td>
<td>1</td>
</tr>
<tr>
<td>ESE 215</td>
<td>Electrical Circuits and Systems</td>
<td>1.5</td>
</tr>
<tr>
<td>CIS 240</td>
<td>Introduction to Computer Systems</td>
<td>1</td>
</tr>
<tr>
<td>ESE 350</td>
<td>Embedded Systems/Microcontroller Laboratory</td>
<td>1.5</td>
</tr>
<tr>
<td>CIS 350</td>
<td>Software Design/Engineering</td>
<td>1</td>
</tr>
<tr>
<td>or CIS 460</td>
<td>Interactive Computer Graphics</td>
<td></td>
</tr>
<tr>
<td>ESE 370</td>
<td>Circuit-Level Modeling, Design, and Optimization for Digital Systems</td>
<td>1</td>
</tr>
<tr>
<td>CIS 380</td>
<td>Computer Operating Systems</td>
<td>1</td>
</tr>
<tr>
<td>CIS 441</td>
<td>Embedded Software for Life-Critical Applications</td>
<td>1</td>
</tr>
<tr>
<td>CIS 471</td>
<td>Computer Organization and Design</td>
<td>1</td>
</tr>
<tr>
<td>Networking</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESE 407</td>
<td>Introduction to Networks and Protocols</td>
<td>1</td>
</tr>
<tr>
<td>or CIS 553</td>
<td>Networked Systems</td>
<td></td>
</tr>
<tr>
<td>Concurrency Lab</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIS 455</td>
<td>Internet and Web Systems</td>
<td>1</td>
</tr>
<tr>
<td>or CIS 505</td>
<td>Software Systems</td>
<td></td>
</tr>
<tr>
<td>or ESE 532</td>
<td>System-on-a-Chip Architecture</td>
<td></td>
</tr>
<tr>
<td>or CIS 565</td>
<td>GPU Programming and Architecture</td>
<td></td>
</tr>
</tbody>
</table>

Senior Design		
CIS 400	Senior Project	1
or ESE 450	Senior Design Project I - EE and SSE	
CIS 401	Senior Project	1
or ESE 451	Senior Design Project II - EE and SSE	

Math and Natural Science		
MATH 104	Calculus, Part I	1
MATH 114	Calculus, Part II	1
MATH 240	Calculus, Part III	1
ESE 301	Engineering Probability	1
or CIS 261	Discrete Probability, Stochastic Processes, and Statistical Inference	
or STAT 430	Probability	
or ENM 321	Engineering Statistics	
CIS 160	Mathematical Foundations of Computer Science	1
ME 110	Introduction to Mechanics	1
or PHYS 140	Principles of Physics I (without laboratory)	
or PHYS 150	Principles of Physics I: Mechanics and Wave Motion	
or PHYS 170	Honors Physics I: Mechanics and Wave Motion	
ESE 112	Engineering Electromagnetics	1.5
or ESE 181	Engineering Electromagnetics	
or ESE 183	Electromagnetism and Radiation	
or PHYS 171	Honors Physics II: Electromagnetism and Radiation	
CHEM 101	General Chemistry	1
or EAS 091	Chemistry Advanced Placement/International Baccalaureate Credit (Engineering Students Only)	
or BIOL 101	Introduction to Biology A	
or BIOL 121	Introduction to Biology - The Molecular Biology of Life	
ESE 400	Engineering Economics	
EAS 545	Engineering Entrepreneurship I	
EAS 595	Foundations of Leadership	
MGMT 237	Management of Technology	
OIDD 236	Scaling Operations in Technology Ventures: Linking Strategy and Execution	
Math, Science, or Engineering Elective		
CIS 400	Engineering Economics	

Math or Natural Science Elective		
CIS 400	Engineering Economics	
EAS 545	Engineering Entrepreneurship I	
EAS 595	Foundations of Leadership	
MGMT 237	Management of Technology	
OIDD 236	Scaling Operations in Technology Ventures: Linking Strategy and Execution	
Math, Science, or Engineering Elective		
CIS 400	Engineering Economics	

Professional Electives		
CIS 400	Engineering Economics	
EAS 545	Engineering Entrepreneurship I	
EAS 595	Foundations of Leadership	
MGMT 237	Management of Technology	
OIDD 236	Scaling Operations in Technology Ventures: Linking Strategy and Execution	
Math, Science, or Engineering Elective		
CIS 400	Engineering Economics	

General Electives		
EAS 203	Engineering Ethics	1
Select 4 Social Science or Humanities courses	4	
Select 2 Social Science, Humanities, or Technology in Business & Society courses	2	

| Total Course Units | 37 |

1 If not taken freshman year, must be replaced by another department approved engineering course.
If BIOL 121, CHEM 101, EAS 091, MEAM 110 or PHYS 140 are taken, choose one natural science lab from the list: BIOL 124 Introductory Organismal Biology Lab, CHEM 053 General Chemistry Laboratory I, MEAM 147 Introduction to Mechanics Lab, PHYS 050 Physics Laboratory I or another department approved Natural Science lab.

At most, two freshman-level Engineering courses may be used as a Professional Elective.

Must include a Writing Seminar (a list of approved Writing Seminars can be found in the SEAS Undergraduate Handbook (https://ugrad.seas.upenn.edu/student-handbook/courses-requirements/writing-courses/))